
1/22/23, 9:02 PMIntro to PyCX

Page 1 of 17file:///Users/marisaeisenberg/Documents/GitHub/epimath/cscs-530-materials/Lectures/PyCX_Intro.html#1

Intro to PyCX
CMPLXSYS 530 - Marisa Eisenberg

1/23/2020

1/22/23, 9:02 PMIntro to PyCX

Page 2 of 17file:///Users/marisaeisenberg/Documents/GitHub/epimath/cscs-530-materials/Lectures/PyCX_Intro.html#1

What is PyCX?

Developed by Hiroki Sayama

A python library that provides a convenient way to visualize ABMs, cellular
automata, etc.

Also includes a wide range of example scripts

·

·

Includes a GUI

'Info' tab

Easy to add interactive parameter control (parameter sliders, etc.)

-

-

-

·

Classic models of many kinds (not just ABMs—ODEs, networks, etc.)

These can be very useful as starting points for building your own models!

-

-

2/17

1/22/23, 9:02 PMIntro to PyCX

Page 3 of 17file:///Users/marisaeisenberg/Documents/GitHub/epimath/cscs-530-materials/Lectures/PyCX_Intro.html#1

How to get PyCX

Download from the PyCX GitHub: https://github.com/hsayama/PyCX

Compatible with Python 2.7 or 3

Several packages we will often want to use (be sure these are installed):

·

·

·

Numpy, scipy, matplotlib, random, math, and networkx-

3/17

https://github.com/hsayama/PyCX

1/22/23, 9:02 PMIntro to PyCX

Page 4 of 17file:///Users/marisaeisenberg/Documents/GitHub/epimath/cscs-530-materials/Lectures/PyCX_Intro.html#1

Using PyCX

To use PyCX, make sure you put the file pycxsimulator.py in the directory
where you have your model code (or wherever your working directory is)

·

Try out the package: open and run abm-segregation-discrete.py to run
the Schelling Model

·

4/17

1/22/23, 9:02 PMIntro to PyCX

Page 5 of 17file:///Users/marisaeisenberg/Documents/GitHub/epimath/cscs-530-materials/Lectures/PyCX_Intro.html#1

PyCX Example Models

The file names of sample codes use the following prefixes:·

"ds-": for low-dimensional dynamical systems

"dynamic-": for demonstration of how to use pycxsimulator.py

"ca-": for cellular automata

"pde-": for partial differential equations

"net-": for network models

"abm-": for agent-based models

-

-

-

-

-

-

5/17

1/22/23, 9:02 PMIntro to PyCX

Page 6 of 17file:///Users/marisaeisenberg/Documents/GitHub/epimath/cscs-530-materials/Lectures/PyCX_Intro.html#1

PyCX model template

Start by loading needed packages & defining model parameters

import pycxsimulator
from pylab import * # imports numpy and pyplot

import necessary modules
define model parameters

6/17

1/22/23, 9:02 PMIntro to PyCX

Page 7 of 17file:///Users/marisaeisenberg/Documents/GitHub/epimath/cscs-530-materials/Lectures/PyCX_Intro.html#1

PyCX model template

Next, build three functions we will need

def initialize():
 global # list global variables
 # initialize system states

def observe():
 global # list global variables
 cla() # to clear the visualization space
 # visualize system states

def update():
 global # list global variables
 # update system states for one discrete time step

7/17

1/22/23, 9:02 PMIntro to PyCX

Page 8 of 17file:///Users/marisaeisenberg/Documents/GitHub/epimath/cscs-530-materials/Lectures/PyCX_Intro.html#1

PyCX model template

Lastly, run the model!

pycxsimulator.GUI().start(func=[initialize, observe, update])

Note that PyCX is very agnostic about how you code the model—it really just
provides a nice simulation and visualization GUI

·

8/17

1/22/23, 9:02 PMIntro to PyCX

Page 9 of 17file:///Users/marisaeisenberg/Documents/GitHub/epimath/cscs-530-materials/Lectures/PyCX_Intro.html#1

Let's build a simple model!

Let's implement the voting model we built in the Emoji-simulator·

Simple voting model·

100 x 100 grid full of agents

Each agent starts with an initial planned vote of "yes" or "no"
(0 = no, 1 = yes)

Each agent will change vote if more than half of queen-type neighbors
vote the other way

-

Wrap the grid so that edge agents have neighbors on the opposite
side

-

-

Set each agent's initial vote with a 0.5 probability of yes-

-

9/17

1/22/23, 9:02 PMIntro to PyCX

Page 10 of 17file:///Users/marisaeisenberg/Documents/GitHub/epimath/cscs-530-materials/Lectures/PyCX_Intro.html#1

Voting model in PyCX

Start by loading PyCX and setting parameters

import pycxsimulator
from pylab import *

n = 100 # size of space: n x n
p = 0.5 # initial agent probability of voting yes

10/17

1/22/23, 9:02 PMIntro to PyCX

Page 11 of 17file:///Users/marisaeisenberg/Documents/GitHub/epimath/cscs-530-materials/Lectures/PyCX_Intro.html#1

Voting model in PyCX

Initialize the model

def initialize():
 # Things we need to access from different functions go here (discuss globals)
 global config, nextconfig

 # Build our grid of agents - fill with zeros for now
 config = zeros([n, n])

 # Set them to vote yes with probability p
 for y in range(n):
 for x in range(n):
 if random() < p: config[x, y] = 1

 # Set the next timestep's grid to zeros for now (we'll update in the update function)
 nextconfig = zeros([n, n])

11/17

1/22/23, 9:02 PMIntro to PyCX

Page 12 of 17file:///Users/marisaeisenberg/Documents/GitHub/epimath/cscs-530-materials/Lectures/PyCX_Intro.html#1

Voting model in PyCX

Update the model at each time step

def update():
 global config, nextconfig

 # Go through each cell and check if they should change their vote in the next step
 for x in range(n):
 for y in range(n):
 count = 0 # variable to keep track of how many neighbors are voting yes

 for dx in [-1, 0, 1]: # check the cell before/middle/after
 for dy in [-1, 0, 1]: # check above/middle/below
 # discuss nesting for loops vs. not---what does this change?

 # Add to count if neighbor is voting yes (note you also count yourself!)
 count += config[(x + dx) % n, (y + dy) % n] # discuss

12/17

1/22/23, 9:02 PMIntro to PyCX

Page 13 of 17file:///Users/marisaeisenberg/Documents/GitHub/epimath/cscs-530-materials/Lectures/PyCX_Intro.html#1

Voting model in PyCX

Update function continued

(This code goes outside the for dx and for dy loops but inside the
for x and for y loops)

 # Now that we know how many neighbors are voting yes, decide what to do
 if config[x,y] == 0: # if this agent was going to vote no
 nextconfig[x, y] = 1 if count > 4 else 0
 # note we only change the vote for nextconfig, not config!

 else: # otherwise agent was going to vote yes (could also do elif)
 nextconfig[x, y] = 0 if (8 - (count-1)) > 4 else 1
 # note we reduced count by 1 since count included self

 # advance config forward one step and reset nextconfig
 config, nextconfig = nextconfig, zeros([n, n])
 # Can also be a little more efficient and do config, nextconfig = nextconfig, config

13/17

1/22/23, 9:02 PMIntro to PyCX

Page 14 of 17file:///Users/marisaeisenberg/Documents/GitHub/epimath/cscs-530-materials/Lectures/PyCX_Intro.html#1

Voting model in PyCX

Observe function

And let's run it!

def observe():
 global config, nextconfig
 cla() # clear visualization
 imshow(config, vmin = 0, vmax = 1, cmap = cm.binary) # display grid!

pycxsimulator.GUI().start(func=[initialize, observe, update])

14/17

1/22/23, 9:02 PMIntro to PyCX

Page 15 of 17file:///Users/marisaeisenberg/Documents/GitHub/epimath/cscs-530-materials/Lectures/PyCX_Intro.html#1

Info

You can add text to the Info tab of the GUI by adding a comment to the initialize
function:

def initialize():
'''
Information about my model goes here.
This is a voting model that does some neat stuff.
Copyright 2020 CSCS 530
'''
global # etc

15/17

1/22/23, 9:02 PMIntro to PyCX

Page 16 of 17file:///Users/marisaeisenberg/Documents/GitHub/epimath/cscs-530-materials/Lectures/PyCX_Intro.html#1

Interactive parameters

You can also add interactive parameters to the GUI by writing a "parameter
setter" function

For example, let's make one for the initial probability of voting yes:

Then, we pass this parameter setter to the pycxsimulator.GUI() when we
run our model:

·

·

def setvoteprob (val = p):
 '''
 Parameter info---this will be displayed when you mouse-over on parameter setter
 '''
 global p
 p = float(val) # or int(val), str(val), etc.
 return val

·

pycxsimulator.GUI(parameterSetters = [setvoteprob]).start(func=[initialize, observe, update])

16/17

1/22/23, 9:02 PMIntro to PyCX

Page 17 of 17file:///Users/marisaeisenberg/Documents/GitHub/epimath/cscs-530-materials/Lectures/PyCX_Intro.html#1

Simulating without PyCX

One nice feature of the PyCX setup is that you can move away from it
relatively easily when you want to do more complicated analyses

Try running initialize() and then running update() a few times without
using PyCX

You can design your own visualizations, how to store results, etc., and then
just run a loop over your timesteps

The PyCX framework encourages organized functions for model setup,
running, etc., but then you can move to your own system for final visualization
and analysis

·

·

·

·

17/17

