
Bayesian approaches to parameter estimation

CSCS 530 - Marisa Eisenberg

Bayesian approaches to parameter estimation

• Bayes’ Theorem, rewritten for inference problems:

• Allows one to account for prior information about the
parameters

• E.g. previous studies in a similar population

• Update parameter information based on new data

P p | z() = P params | data() = P z | p() ⋅P p()
P z()

Bayesian approaches to parameter estimation

P p | z() = P params | data() = P z | p() ⋅P p()
P z()

Likelihood Prior 
distribution

Normalizing constant

(can be difficult to calculate!)

P (z) =

Z

p
P (z, p)dp

Bayesian Parameter
Estimation

• From prior distribution & likelihood distribution,
determine the posterior distribution of the
parameter

• Can repeat this process as new data is available

Bayesian Parameter
Estimation

• Treats the parameters inherently as distributions
(belief)

• Philosophical battle between Bayesian &
frequentist perspectives

from XKCD:
http://xkcd.com/1132/

http://xkcd.com/1132/
http://xkcd.com/1132/

Bayesian probability for babies!

What is the likelihood? 
L(NC cookie | NC bite) = P(NC bite | NC cookie)

What is the likelihood? 
L(C cookie | NC bite) = P(NC bite | C cookie)

What is the maximum likelihood estimate?

Maximum likelihood:

What about the prior distribution of cookies?

Our data (likelihood) tells us we have a no-candy
bite—how many of the bites are no candy?

1/3 of the candy cookie bites have no candy, but
there are a lot more of them

Prior x Likelihood ~ Posterior

9 x 1/3 = 3 candy cookies, vs. 1 x 1 = 1 no-candy cookie

Bayesian estimation!

Bayesian approaches to parameter estimation

P p | z() = P params | data() = P z | p() ⋅P p()
P z()

Likelihood Prior 
distribution

Normalizing constant

(can be difficult to calculate!)

P (z) =

Z

p
P (z, p)dp

Bayesian Parameter Estimation

• Can think of Bayesian estimation as a map, where we
update the prior to a new posterior based on data

P (p) ⇥P (z|p)
P (z)

P (p|z)
Prior

Likelihood/P(z)
Posterior

Denominator term - P(z)

• The denominator term:

• Probability of seeing the data z from the model, over all
parameter space

• Often doesn’t have a closed form solution—evaluating
numerically can also be difficult

• E.g. if p is a three dimensional, then if we took 1000 grid
points in each direction, the grid representing the function
to be integrated has 10003 = 109 points

P (z) =

Z

p
P (z, p)dp

Maximum a posteriori (MAP) estimation

• Instead of working with the full term, just use the
numerator: 

• The denominator is a constant, so the numerator is
proportional to the posterior we are trying to estimate

• Then the p which yields max() is the same p
that maximizes

• If we only need a point estimate, MAP gets around
needing to estimate

P (p|z) = P (z|p) · P (p)

P (z)

P (z|p) · P (p)
P (p|z)

P (z)

Conjugate Priors

• For some likelihood distributions, there can be a
distribution family for our prior that makes the posterior
and prior come from the same type of distribution

• This is called a conjugate prior for that likelihood

• For example, a gamma distribution is the conjugate prior
for a Poisson likelihood.

P (p) ⇥P (z|p)
P (z)

P (p|z)
Gamma

Poisson
Gamma

Why conjugate priors?

• If we have a conjugate prior, we can calculate the
posterior directly from the likelihood and the prior—
handles the issue with calculating the denominator P(z)

• Also makes it easier to repeat Bayesian estimation—
making the posterior the prior and updating as new data
comes in

P (p) ⇥P (z|p)
P (z)

P (p|z)
Prior

Bayes
Posterior

Conjugate prior example: coin flip

• Let z be the data—i.e. the coin flip outcome, z = 1 if it’s
heads, z = 0 if it’s tails

• Let θ be the probability the coin shows heads

• Likelihood: Bernoulli distribution

P (z|✓) = ✓z(1� ✓)1�z

Conjugate prior example: coin flip

• Conjugate prior: beta distribution 

• α and β are hyperparameters - shape parameters that
describe the distribution of the model parameters

P (✓|↵,�) = ✓↵�1(1� ✓)��1

R 1
0 ✓↵�1(1� ✓)��1d✓

Whoa

How does the posterior work out to be a beta
distribution as well?

P (✓|z) = P (z|✓)P (✓|↵,�)
P (z)

=
✓z(1� ✓)1�z ✓↵�1(1�✓)��1

R 1
0 ✓↵�1(1�✓)��1d✓

P (z)

=
✓z(1� ✓)1�z ✓↵�1(1�✓)��1

R 1
0 ✓↵�1(1�✓)��1d✓

R 1
0 P (z, ✓)d✓

=
✓z(1� ✓)1�z ✓↵�1(1�✓)��1

R 1
0 ✓↵�1(1�✓)��1d✓

R 1
0 ✓z(1� ✓)1�zd✓

Etc.—but you can see it will work out to be beta distributed

Coin flip example - Posterior

• Beta distributed with posterior hyperparameters:

• If we take multiple data points, this works out to be:

↵post = ↵+ z �post = � + 1� z

�post = � + n�
nX

i=1

zi↵post = ↵+
nX

i=1

zi

Sampling methods: approximating a distribution

• What if we want priors that aren’t conjugate? Or what if
our likelihood is more complicated and it isn’t clear what
the conjugate prior is?

• Now we need some way to get the posterior, even
though the denominator term is annoying

• How to approximate the distribution?

Markov Chain Monte Carlo (MCMC)

• Sampling-based methods—in particular, Markov chain
Monte Carlo (MCMC)

• Also used for many other things! Can approximate
distributions more generally—used in cryptography,
calculating neutron diffusion, all sorts of things

Markov Chain Monte Carlo (MCMC)

• MCMC is a method for sampling from a distribution

• Markov chain: a type of (discrete) Markov process

• Markov: memoryless, i.e. what happens at the next
step only depends on the current step

• Monte Carlo methods are a class of algorithms that
use sampling/randomness—often used to solve
deterministic problems (such as approximating an
integral)

Markov Chain Monte Carlo (MCMC)

• Main idea: make a Markov chain that converges to the
distribution we’re trying to sample from—in this case, the
posterior distribtuion!

• The Markov chain will have some transient dynamics
(burn-in), and then reach an equilibrium distribution
which is the one we’re trying to approximate

Markov Chain Monte Carlo (MCMC)

• Many MCMC methods are based on random walks

• Set up walk to spend more time in higher probability
regions

• Typically don’t need the actual distribution for this, just
something proportional—so we can get the relative
probability density at two points

• So we don’t need to calculate P(z)! We can just use the
numerator

Example

• Suppose two parameters, with likelihood x prior:

Example adapted from https://nicercode.github.io/guides/mcmc/

Sample path
We start our parameter values at a random guess

The random walk the MCMC traverses is shown as
the grey line

Sample path

Sample path
Over time, the random walk accrues samples of the posterior
distribution, proportional to the probability of those values. In other
words, we get more samples from higher probability regions

Sampled density

Can also get marginals:

Eventually, the sampled values recreate the posterior
distribution! And we didn’t need the denominator term,
only the numerator term, so these are relatively easy to
calculate

Example: Metropolis Algorithm

• Idea is to ‘walk’ randomly through parameter space,
spending more time in places that are higher probability—
that way, the overall distribution draws more from higher
probability spots

• Setup—we need

• A function proportional to the distribution we want
to sample, in our case

• A proposal distribution (how we choose the next point
from the current one) - more on this in a minute

f(p) = P (z|p) · P (p)
f(p)

Metropolis Algorithm

• Start at some point in parameter space

• For each iteration

• Propose a new random point based on the
current point (using the proposal distribution)

• Calculate the acceptance ratio,

• If , the new point is as good or better—accept

• If , accept with probability

↵ = f(pnext)/f(pcurr)

pnext
pcurr

↵ � 1

↵ < 1 ↵

What does the metropolis algorithm do?

pstart

f∝
po

st
er

io
r

What does the metropolis algorithm do?

p

f∝
po

st
er

io
r

pnext

} >
→Accept

pcurr

proposal

distribution

What does the metropolis algorithm do?

p

f∝
po

st
er

io
r

pcurrpnext

} >
→Accept

What does the metropolis algorithm do?

p

f∝
po

st
er

io
r

pnext

} >

→Maybe accept with probability α

pcurr

Reject

What does the metropolis algorithm do?

p

f∝
po

st
er

io
r

pnext

} >

→Maybe accept with probability α

pcurr

Accept

What does the metropolis algorithm do?

p

f∝
po

st
er

io
r

pcurr

What does the metropolis algorithm do?

p

f∝
po

st
er

io
r

pcurr

What does the metropolis algorithm do?

p

f∝
po

st
er

io
r

pcurr

What does the metropolis algorithm do?

p

f∝
po

st
er

io
r

pcurr

Why does this recover the posterior distribution?

Key is the acceptance ratio

p

po
st

er
io

r

We want the amount  
of time spent here

To be ~twice the amount  
of time spent here

↵

Acceptance ratio = ratio of heights

Why does this recover the posterior distribution?

• The acceptance ratio

• Note it is equal to since the
denominators cancel

• Suppose we’re at the peak

• If f(pcurr) = 2 f(pnext), then , i.e. we accept with
1/2 probability

• Overall, will mean the number of samples we take from a
region will be proportional to the height of the distribution

↵ = f(pnext)/f(pcurr)

↵ = 1/2

P (pnext|z)/P (pcurr|z)

Proposal Distribution

• A distribution that lets us choose our next point randomly
from our current one

• For Metropolis algorithm, must be symmetric

• Common to choose a normal distribution centered on
current point

• Width (SD) of normal = proposal width

• Choice of proposal width can strongly affect how the
Markov chain behaves, how well it converges, mixes, etc.

Example (apologies in advance for picking normal
distributions for everything!)

• Model: normal distribution

• Suppose is known, to be estimated

• Likelihood:

• Prior:

• Suppose we have 20 data points

N (µ,�)

µ�

µ ⇠ N (0, 3)

Example - proposal width: SD = 0.5

Goldilocks problem: 
What happens if we change the proposal width?

proposal SD = 0.05 proposal SD = 2

Example: prior, likelihood, and posterior (all scaled)

MCMC

• MCMC improves many of the problems that other
optimization methods face (getting trapped in local
minima, etc.)

• However, those issues can still cause problems for
MCMC too

• How to know when you’ve run the MCMC long enough
and collected enough samples to reflect the distribution?

• How to know if you have explored the space sufficiently?

Assessing convergence

• MCMC methods will let us sample the posterior once
they’ve converged to their equilibrium distribution

• How to know once we’ve reached equilibrium?

• Visual evaluation of burn-in

• Autocorrelation of elements in chain k iterations apart

• Also approaches to use in combination with/instead of
burn-in: start with MAP estimation, multiple chains, etc.

Assessing convergence

• Often done visually

• Although, this can be misleading:

Chain shifts after 130,000  
iterations due to a local min  
in sum of squares

(Example from R. Smith,  
Uncertainty Quantification)Pa

ra
m

et
er

iteration

Assessing convergence

• Often done visually

• Although, this can be misleading:

Chain shifts after 130,000  
iterations due to a local min  
in sum of squares

(Example from R. Smith,  
Uncertainty Quantification)Pa

ra
m

et
er

iteration

Metropolis & Metropolis-Hastings Caveats

• Assessing convergence—how long is burn-in?

• What about when you have unidentifiability or multiple
minima?

• Correlated samples

• How to choose a proposal width? (~size of next jump)

Wide range of methods

• Metropolis–Hastings

• Gibbs sampling

• Variations of the above: prior optimization, multi-start,
adaptive methods, delayed rejection

• DRAM (Delayed Rejection Adaptive Metropolis-
Hastings)

• Many more!

Examples

MCMC code examples

• Basic normal distribution model with MCMC

• Mean-field SIR model MCMC

• Recap model structure

• Go through code

• Illustrate identifiability issues

Sample Importance Resampling

• MCMC can be slow—another approach to getting a
posterior sample is sample importance resampling

• Can be used with the true likelihood

• Or with an approximating function (e.g. approximate
Bayesian computation, more on this in a bit)

• One of a bunch of related approaches in importance
sampling/approximate Bayesian computation/etc)

Using reweighting to convert between distributions

• Starts with a sample of values drawn from probability
distribution A, and suppose probability distribution B is our
target distribution

• Set the weight of each element x to be PDFB(x)/PDFA(x)

• Sample from the list using the above weights (normalized to
sum to 1 say)

• This results in a draw from distribution B, even though
distribution A was used to generate the sample! (With caveats
that you need to make your initial sample big enough etc.)

Sample Importance Resampling

• Draw a sample of parameters from your prior (either drawing at
random or with LHS/Sobol/etc. sampling)

• Run the model for each sample

• Calculate the likelihood value for each sample

• Weight the samples based on the likelihood

• Resample to get the final set of samples

• The result follows the posterior distribution because you sample from
the prior, and then weight with the likelihood (and we don’t divide by
the prior in our weighting like in the previous example)

Example: Norovirus model

Havumaki et al. 2020

Likelihoods can be challenging to calculate for
agent based and network models

• Do a little mini example where the network is known

• What if the network structure is unknown?

• Some done for Erdos-Renyi graphs, other special networks

• Exponential random graph models (e.g. see this review for
SIR dynamics)

• Depends on what data you observe too

• But often quite difficult, especially for more general ABMs or
networks

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0142181
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0142181

So what to do?

• Could numerically
approximate the
likelihood via sampling
(i.e. figure out the
probability of observing
the data for a given set
of parameters by
sampling many times
from those parameter
values, and then do
this across parameter
space)

• Very computationally
intensive

https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1461-0248.2011.01640.x

So what to do?

• Another alternative is approximate Bayesian
computation (ABC)

• Similar to rejection sampling or sample-importance
resampling

• Approximate the posterior by sampling from the prior and
then selecting only those samples that match the data
closely (within some threshold for however we define
‘close’)

ABC: Approximate Bayesian Computation

• Basic idea

• Choose a function to measure the distance between

model and data (goodness of fit), typically based on
some sort of summary statistic of the model fit

• Sample from the prior

• Keep only those samples that fall within a threshold

based on the summary statistic

• Resulting distribution of parameter samples should

approximate the posterior (if you choose a good
summary statistic!)

https://en.wikipedia.org/wiki/Approximate_Bayesian_computation

Coin flip example: p = probability of heads

distance function = |observed H - simulated H|

https://towardsdatascience.com/the-abcs-of-approximate-bayesian-computation-bfe11b8ca341

How well do we do?

https://towardsdatascience.com/the-abcs-of-approximate-bayesian-computation-bfe11b8ca341

Another example: Markov process

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002803

Summary statistics and threshold

•

Summary statistic and threshold

• These are very tricky to choose!

• Often use an adaptive threshold

• Sufficient statistic: one that gives the same distribution
(often in the large N limit) as the true likelihood

• Sufficient statistics are tough to sort out—often test
several candidate statistics (e.g. subset selection and
projection methods), and potentially use a simpler model
for testing (one where the likelihood is more tractable)

Sufficient summary statistics

• Often people pick things like comparing statistical
moments (mean, variance, etc) of the data vs. model
simulation as a summary statistic in hopes that this will
be a sufficient statistic

• Or many people fit a descriptive model (e.g. a distribution
or regression model) to the data, and then also fit the
same model to the model simulation, and compare the
values

Sufficient summary statistics

• Hard to prove sufficiency!

• Typically test with simulated data (i.e. simulate the data
and then try to estimate the parameters using a given
summary statistic and see how you do)

• Or with simpler examples of the model where sufficiency
can be tested/proven more easily

Choosing the threshold for ABC

• Ideally would sort of want a threshold of 0 (so that you’re
always sampling from points in parameter space that can
generate the exact data you observed)

• But realistically this will often lead to no accepted samples

• Alternatively, if the threshold is too high, all samples will be
accepted and you just get back a sample of the prior

• In general try to balance small threshold with
computational constraints

ABC: Approximate Bayesian Computation

• The rejection sampling method is very common for ABC

• But you can also do MCMC, sample importance
resampling, etc, but use the summary statistic instead of
the likelihood (e.g. ABC-MCMC is a thing people use a
lot!)

• See this review for more (and this post for associated
code)

https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1461-0248.2011.01640.x
https://theoreticalecology.wordpress.com/2012/07/15/a-simple-approximate-bayesian-computation-mcmc-abc-mcmc-in-r/
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1461-0248.2011.01640.x
https://theoreticalecology.wordpress.com/2012/07/15/a-simple-approximate-bayesian-computation-mcmc-abc-mcmc-in-r/

https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1461-0248.2011.01640.x

Readings

• Menzies NA, Soeteman DI, Pandya A, Kim JJ. Bayesian
methods for calibrating health policy models: a tutorial.
PharmacoEconomics. 2017 Jun 1;35(6):613-24.

