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Bayesian approaches to parameter estimation

• Bayes’ Theorem, rewritten for inference problems: 


• Allows one to account for prior information about the 
parameters


• E.g. previous studies in a similar population


• Update parameter information based on new data

P p | z( ) = P params | data( ) = P z | p( ) ⋅P p( )
P z( )



Bayesian approaches to parameter estimation

P p | z( ) = P params | data( ) = P z | p( ) ⋅P p( )
P z( )

Likelihood Prior 
distribution

Normalizing constant

(can be difficult to calculate!)

P (z) =

Z

p
P (z, p)dp



Bayesian Parameter 
Estimation

• From prior distribution & likelihood distribution, 
determine the posterior distribution of the 
parameter


• Can repeat this process as new data is available



Bayesian Parameter 
Estimation

• Treats the parameters inherently as distributions 
(belief)


• Philosophical battle between Bayesian & 
frequentist perspectives



from XKCD:
http://xkcd.com/1132/

http://xkcd.com/1132/
http://xkcd.com/1132/


Bayesian probability for babies!





What is the likelihood? 
L(NC cookie | NC bite) = P(NC bite | NC cookie)



What is the likelihood? 
L(C cookie | NC bite) = P(NC bite | C cookie)



What is the maximum likelihood estimate?

Maximum likelihood:



What about the prior distribution of cookies?



Our data (likelihood) tells us we have a no-candy 
bite—how many of the  bites are no candy?



1/3 of the candy cookie bites have no candy, but 
there are a lot more of them

Prior x Likelihood ~ Posterior

9 x 1/3 = 3 candy cookies, vs. 1 x 1 = 1 no-candy cookie



Bayesian estimation!



Bayesian approaches to parameter estimation

P p | z( ) = P params | data( ) = P z | p( ) ⋅P p( )
P z( )

Likelihood Prior 
distribution

Normalizing constant

(can be difficult to calculate!)

P (z) =

Z

p
P (z, p)dp



Bayesian Parameter Estimation

• Can think of Bayesian estimation as a map, where we 
update the prior to a new posterior based on data

P (p) ⇥P (z|p)
P (z)

P (p|z)
Prior

Likelihood/P(z)
Posterior



Denominator term - P(z)

• The denominator term:


• Probability of seeing the data z from the model, over all 
parameter space


• Often doesn’t have a closed form solution—evaluating 
numerically can also be difficult


• E.g. if p is a three dimensional, then if we took 1000 grid 
points in each direction, the grid representing the function 
to be integrated has 10003 = 109 points

P (z) =

Z

p
P (z, p)dp



Maximum a posteriori (MAP) estimation

• Instead of working with the full term, just use the 
numerator: 

• The denominator is a constant, so the numerator is 
proportional to the posterior we are trying to estimate


• Then the p which yields max(                     ) is the same p 
that maximizes 


• If we only need a point estimate, MAP gets around 
needing to estimate 

P (p|z) = P (z|p) · P (p)

P (z)

P (z|p) · P (p)
P (p|z)

P (z)



Conjugate Priors

• For some likelihood distributions, there can be a 
distribution family for our prior that makes the posterior 
and prior come from the same type of distribution


• This is called a conjugate prior for that likelihood


• For example, a gamma distribution is the conjugate prior 
for a Poisson likelihood.

P (p) ⇥P (z|p)
P (z)

P (p|z)
Gamma

Poisson
Gamma



Why conjugate priors?

• If we have a conjugate prior, we can calculate the 
posterior directly from the likelihood and the prior—
handles the issue with calculating the denominator P(z)


• Also makes it easier to repeat Bayesian estimation—
making the posterior the prior and updating as new data 
comes in

P (p) ⇥P (z|p)
P (z)

P (p|z)
Prior

Bayes
Posterior



Conjugate prior example: coin flip

• Let z be the data—i.e. the coin flip outcome, z = 1 if it’s 
heads, z = 0 if it’s tails 


• Let θ be the probability the coin shows heads


• Likelihood: Bernoulli distribution

P (z|✓) = ✓z(1� ✓)1�z



Conjugate prior example: coin flip

• Conjugate prior: beta distribution 

• α and β are hyperparameters - shape parameters that 
describe the distribution of the model parameters

P (✓|↵,�) = ✓↵�1(1� ✓)��1

R 1
0 ✓↵�1(1� ✓)��1d✓

Whoa



How does the posterior work out to be a beta 
distribution as well?

P (✓|z) = P (z|✓)P (✓|↵,�)
P (z)

=
✓z(1� ✓)1�z ✓↵�1(1�✓)��1

R 1
0 ✓↵�1(1�✓)��1d✓

P (z)

=
✓z(1� ✓)1�z ✓↵�1(1�✓)��1

R 1
0 ✓↵�1(1�✓)��1d✓

R 1
0 P (z, ✓)d✓

=
✓z(1� ✓)1�z ✓↵�1(1�✓)��1

R 1
0 ✓↵�1(1�✓)��1d✓

R 1
0 ✓z(1� ✓)1�zd✓

Etc.—but you can see it will work out to be beta distributed



Coin flip example - Posterior

• Beta distributed with posterior hyperparameters:


• If we take multiple data points, this works out to be:

↵post = ↵+ z �post = � + 1� z

�post = � + n�
nX

i=1

zi↵post = ↵+
nX

i=1

zi



Sampling methods: approximating a distribution

• What if we want priors that aren’t conjugate? Or what if 
our likelihood is more complicated and it isn’t clear what 
the conjugate prior is?


• Now we need some way to get the posterior, even 
though the denominator term is annoying


• How to approximate the distribution?



Markov Chain Monte Carlo (MCMC)

• Sampling-based methods—in particular, Markov chain 
Monte Carlo (MCMC) 

• Also used for many other things! Can approximate 
distributions more generally—used in cryptography, 
calculating neutron diffusion, all sorts of things



Markov Chain Monte Carlo (MCMC)

• MCMC is a method for sampling from a distribution


• Markov chain: a type of (discrete) Markov process


• Markov: memoryless, i.e. what happens at the next 
step only depends on the current step


• Monte Carlo methods are a class of algorithms that 
use sampling/randomness—often used to solve 
deterministic problems (such as approximating an 
integral)



Markov Chain Monte Carlo (MCMC)

• Main idea: make a Markov chain that converges to the 
distribution we’re trying to sample from—in this case, the 
posterior distribtuion!


• The Markov chain will have some transient dynamics 
(burn-in), and then reach an equilibrium distribution 
which is the one we’re trying to approximate



Markov Chain Monte Carlo (MCMC)

• Many MCMC methods are based on random walks


• Set up walk to spend more time in higher probability 
regions


• Typically don’t need the actual distribution for this, just 
something proportional—so we can get the relative 
probability density at two points


• So we don’t need to calculate P(z)! We can just use the 
numerator



Example

• Suppose two parameters, with likelihood x prior:

Example adapted from https://nicercode.github.io/guides/mcmc/



Sample path
We start our parameter values at a random guess

The random walk the MCMC traverses is shown as 
the grey line




Sample path



Sample path
Over time, the random walk accrues samples of the posterior 
distribution, proportional to the probability of those values. In other 
words, we get more samples from higher probability regions



Sampled density

Can also get marginals:

Eventually, the sampled values recreate the posterior 
distribution! And we didn’t need the denominator term, 
only the numerator term, so these are relatively easy to 
calculate



Example: Metropolis Algorithm

• Idea is to ‘walk’ randomly through parameter space, 
spending more time in places that are higher probability—
that way, the overall distribution draws more from higher 
probability spots


• Setup—we need


• A function        proportional to the distribution we want 
to sample, in our case 


• A proposal distribution (how we choose the next point 
from the current one) - more on this in a minute

f(p) = P (z|p) · P (p)
f(p)



Metropolis Algorithm

• Start at some point in parameter space


• For each iteration


• Propose a new random point          based on the 
current point         (using the proposal distribution)


• Calculate the acceptance ratio,


• If          , the new point is as good or better—accept


• If          , accept with probability

↵ = f(pnext)/f(pcurr)

pnext
pcurr

↵ � 1

↵ < 1 ↵



What does the metropolis algorithm do?

pstart
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What does the metropolis algorithm do?
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Why does this recover the posterior distribution?

Key is the acceptance ratio 

p

po
st

er
io

r

We want the amount  
of time spent here 

To be ~twice the amount  
of time spent here

↵

Acceptance ratio = ratio of heights



Why does this recover the posterior distribution?

• The acceptance ratio


• Note it is equal to                                    since the 
denominators cancel


• Suppose we’re at the peak


• If f(pcurr) = 2 f(pnext), then              , i.e. we accept with 
1/2 probability


• Overall, will mean the number of samples we take from a 
region will be proportional to the height of the distribution 

↵ = f(pnext)/f(pcurr)

↵ = 1/2

P (pnext|z)/P (pcurr|z)



Proposal Distribution

• A distribution that lets us choose our next point randomly 
from our current one


• For Metropolis algorithm, must be symmetric


• Common to choose a normal distribution centered on 
current point


• Width (SD) of normal = proposal width


• Choice of proposal width can strongly affect how the 
Markov chain behaves, how well it converges, mixes, etc.



Example (apologies in advance for picking normal 
distributions for everything!)

• Model: normal distribution


• Suppose    is known,    to be estimated


• Likelihood:


• Prior: 


• Suppose we have 20 data points

N (µ,�)

µ�

µ ⇠ N (0, 3)



Example - proposal width: SD = 0.5



Goldilocks problem: 
What happens if we change the proposal width?

proposal SD = 0.05 proposal SD = 2



Example: prior, likelihood, and posterior (all scaled)



MCMC

• MCMC improves many of the problems that other 
optimization methods face (getting trapped in local 
minima, etc.)


• However, those issues can still cause problems for 
MCMC too


• How to know when you’ve run the MCMC long enough 
and collected enough samples to reflect the distribution?


• How to know if you have explored the space sufficiently?



Assessing convergence

• MCMC methods will let us sample the posterior once 
they’ve converged to their equilibrium distribution


• How to know once we’ve reached equilibrium?


• Visual evaluation of burn-in


• Autocorrelation of elements in chain k iterations apart


• Also approaches to use in combination with/instead of 
burn-in: start with MAP estimation, multiple chains, etc.



Assessing convergence

• Often done visually


• Although, this can be misleading:

Chain shifts after 130,000  
iterations due to a local min  
in sum of squares

(Example from R. Smith,  
Uncertainty Quantification)Pa

ra
m

et
er

iteration



Assessing convergence

• Often done visually


• Although, this can be misleading:

Chain shifts after 130,000  
iterations due to a local min  
in sum of squares

(Example from R. Smith,  
Uncertainty Quantification)Pa

ra
m

et
er

iteration



Metropolis & Metropolis-Hastings Caveats

• Assessing convergence—how long is burn-in? 


• What about when you have unidentifiability or multiple 
minima?


• Correlated samples


• How to choose a proposal width? (~size of next jump)



Wide range of methods

• Metropolis–Hastings


• Gibbs sampling


• Variations of the above: prior optimization, multi-start, 
adaptive methods, delayed rejection


• DRAM (Delayed Rejection Adaptive Metropolis-
Hastings)


• Many more!



Examples













MCMC code examples

• Basic normal distribution model with MCMC


• Mean-field SIR model MCMC


• Recap model structure


• Go through code


• Illustrate identifiability issues



Sample Importance Resampling

• MCMC can be slow—another approach to getting a 
posterior sample is sample importance resampling 


• Can be used with the true likelihood


• Or with an approximating function (e.g. approximate 
Bayesian computation, more on this in a bit)


• One of a bunch of related approaches in importance 
sampling/approximate Bayesian computation/etc)



Using reweighting to convert between distributions

• Starts with a sample of values drawn from probability 
distribution A, and suppose probability distribution B is our 
target distribution


• Set the weight of each element x to be PDFB(x)/PDFA(x)


• Sample from the list using the above weights (normalized to 
sum to 1 say)


• This results in a draw from distribution B, even though 
distribution A was used to generate the sample! (With caveats 
that you need to make your initial sample big enough etc.)



Sample Importance Resampling

• Draw a sample of parameters from your prior (either drawing at 
random or with LHS/Sobol/etc. sampling)


• Run the model for each sample


• Calculate the likelihood value for each sample


• Weight the samples based on the likelihood


• Resample to get the final set of samples


• The result follows the posterior distribution because you sample from 
the prior, and then weight with the likelihood (and we don’t divide by 
the prior in our weighting like in the previous example)



Example: Norovirus model

Havumaki et al. 2020





Likelihoods can be challenging to calculate for 
agent based and network models

• Do a little mini example where the network is known


• What if the network structure is unknown? 


• Some done for Erdos-Renyi graphs, other special networks


• Exponential random graph models (e.g. see this review for 
SIR dynamics)


• Depends on what data you observe too


• But often quite difficult, especially for more general ABMs or 
networks

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0142181
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0142181


So what to do?

• Could numerically 
approximate the 
likelihood via sampling 
(i.e. figure out the 
probability of observing 
the data for a given set 
of parameters by 
sampling many times 
from those parameter 
values, and then do 
this across parameter 
space)


• Very computationally 
intensive

https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1461-0248.2011.01640.x



So what to do?

• Another alternative is approximate Bayesian 
computation (ABC) 

• Similar to rejection sampling or sample-importance 
resampling


• Approximate the posterior by sampling from the prior and 
then selecting only those samples that match the data 
closely (within some threshold for however we define 
‘close’)



ABC: Approximate Bayesian Computation

• Basic idea

• Choose a function to measure the distance between 

model and data (goodness of fit), typically based on 
some sort of summary statistic of the model fit 


• Sample from the prior

• Keep only those samples that fall within a threshold 

based on the summary statistic

• Resulting distribution of parameter samples should 

approximate the posterior (if you choose a good 
summary statistic!)



https://en.wikipedia.org/wiki/Approximate_Bayesian_computation



Coin flip example: p = probability of heads

distance function = |observed H - simulated H|

https://towardsdatascience.com/the-abcs-of-approximate-bayesian-computation-bfe11b8ca341



How well do we do?

https://towardsdatascience.com/the-abcs-of-approximate-bayesian-computation-bfe11b8ca341



Another example: Markov process

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002803







Summary statistics and threshold

•



Summary statistic and threshold

• These are very tricky to choose!


• Often use an adaptive threshold


• Sufficient statistic: one that gives the same distribution 
(often in the large N limit) as the true likelihood


• Sufficient statistics are tough to sort out—often test 
several candidate statistics (e.g. subset selection and 
projection methods), and potentially use a simpler model 
for testing (one where the likelihood is more tractable)



Sufficient summary statistics

• Often people pick things like comparing statistical 
moments (mean, variance, etc) of the data vs. model 
simulation as a summary statistic in hopes that this will 
be a sufficient statistic


• Or many people fit a descriptive model (e.g. a distribution 
or regression model) to the data, and then also fit the 
same model to the model simulation, and compare the 
values



Sufficient summary statistics

• Hard to prove sufficiency! 


• Typically test with simulated data (i.e. simulate the data 
and then try to estimate the parameters using a given 
summary statistic and see how you do)


• Or with simpler examples of the model where sufficiency 
can be tested/proven more easily



Choosing the threshold for ABC

• Ideally would sort of want a threshold of 0 (so that you’re 
always sampling from points in parameter space that can 
generate the exact data you observed)


• But realistically this will often lead to no accepted samples 


• Alternatively, if the threshold is too high, all samples will be 
accepted and you just get back a sample of the prior


• In general try to balance small threshold with 
computational constraints





ABC: Approximate Bayesian Computation

• The rejection sampling method is very common for ABC


• But you can also do MCMC, sample importance 
resampling, etc, but use the summary statistic instead of 
the likelihood (e.g. ABC-MCMC is a thing people use a 
lot!)


• See this review for more (and this post for associated 
code)

https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1461-0248.2011.01640.x
https://theoreticalecology.wordpress.com/2012/07/15/a-simple-approximate-bayesian-computation-mcmc-abc-mcmc-in-r/
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1461-0248.2011.01640.x
https://theoreticalecology.wordpress.com/2012/07/15/a-simple-approximate-bayesian-computation-mcmc-abc-mcmc-in-r/


https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1461-0248.2011.01640.x



Readings

• Menzies NA, Soeteman DI, Pandya A, Kim JJ. Bayesian 
methods for calibrating health policy models: a tutorial. 
PharmacoEconomics. 2017 Jun 1;35(6):613-24.


