
AI models and interpretability

Complex Systems 530 - Marisa Eisenberg

Large language models

• ChatGPT (UM’s version: http://umgpt.umich.edu)

• Llama

• Bard

How are large language models (LLMs) like Chat-
GPT structured?

• GPT = Generative Pretrained Transformer

• Generative: generates the next word

• Pretrained: what it sounds like, i.e. trained ahead of time

• Transformer: the type of neural network model that many
LLMs use

• Built to recognize and work with sequences of inputs to
generate the next thing (you can do this with other stuff
too, e.g. images —> video, genetic sequences, etc.)

LLMs

• Transformer models - how they work

• What are they trained on, what are they trained to do

• What they do/don’t do

How is are large language models (LLMs) like
Chat-GPT structured?

• LLMs are built to predict the next word in a sequence

• Note the input sequence in a chat-GPT session is the whole
conversation so far

https://mark-riedl.medium.com/a-very-gentle-introduction-to-large-language-models-without-the-hype-5f67941fa59e

Text example, temperature

• Chat-GPT 2

• Input: “Complex systems is a fascinating”

• Top 5 most probable outputs:

• But if you just take the most probably output every time?

Adapted from: https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/

You get sort of repetitive nonsense

You get sort of repetitive nonsense

You need to inject some randomness (temperature)

Although it can take you in some funny directions
depending how you set the level of randomness

Distribution of possible next words (notice it gets
power-law-y)

Adapted from: https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/

Distribution of possible next words (notice it gets
power-law-y)

Adapted from: https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/

How do you figure out word probabilities?  
Thinking about n-grams

• letter n-grams get better as we increase n

• word n-grams too (random vs 2-gram examples)

https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/

n-grams and word probabilities

• Why not just use really long n-grams? Should generate
longer sequences of words with the right overall
probabilities

• But we don’t have nearly enough data! Not enough
English text in the world to do this

• Web: few hundred billion words 
Digitized books: ~hundred billion words.

https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/

• 40,000 common words —> number of 2-grams = 1.6
billion

• Number of possible 3-grams = 60 trillion

• 10 words? 20? More than would ever be possible to
write down even if that’s all anyone ever did

• Instead build a model that lets us estimate the sequence
probabilities even if we’ve never seen that exact input
string—this is what LLMs do

Okay, so how do we do it? Usually something like:

• Tokenize: get the data in a numerical form we can work
with

• Embed/encode the inputs

• Process them (attention, transformers, etc) - various
blocks of neural networks here

• De-embed/decode

• Spit out the next word you chose

Modular structure (blocks) in large AI models

http://jalammar.github.io/illustrated-stable-diffusion/
By Vectorization: Mrmw - Own work based on: Full GPT architecture.png:,

CC0, https://commons.wikimedia.org/w/index.php?curid=146645810

Tokens

• There are ~50,000 commonly used words in the English
language

• So we can take a piece of text and represent it as a
sequence of numbers that encode which word

• But we do something slightly more efficient—tokens
rather than words (this is part of why LLMs can
sometimes produce weird made up words

Tokens

https://blogs.rstudio.com/ai/posts/2023-05-25-llama-tensorflow-keras/

Token examples

https://blogs.rstudio.com/ai/posts/2023-05-25-llama-tensorflow-keras/

More frequent tokens get lower IDs

Encoding/embedding:

importance of dimension reduction

https://mark-riedl.medium.com/a-very-gentle-introduction-to-large-language-models-without-the-hype-5f67941fa59e

Even worse for longer input sequences

https://mark-riedl.medium.com/a-very-gentle-introduction-to-large-language-models-without-the-hype-5f67941fa59e

But many things functionally act the same in human
language—we don’t need such high dimension

• Anything that means royalty can  
probably lead to the same word (e.g.  
throne vs. chair/toilet/horse/etc)

• This is part of how LLMs learn to understand language!

• Forcing the model to  
reduce to a lower  
dimension means we have to  
learn common  
structures

https://mark-riedl.medium.com/a-very-gentle-introduction-to-large-language-models-without-the-hype-5f67941fa59e

Embedding helps capture meaning

https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/

Embedding

• How much did we crunch things down?

• 50K token options are converted (by a single-layer neural
net) into an embedding vector of length 768 for GPT-2 and
12,288 for ChatGPT’s GPT-3

• Knowing when to reduce dimension and when not to is part
of the art that makes it not just a universal approximator

• E.g. compare to digits example in http://
neuralnetworksanddeeplearning.com/chap1.html (could
do four output neurons but works much better with 10)

http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap1.html

Positional encoding

• Keep track of both the what the words are and their position relative to each
other

• Process those two pieces of information together

• Example: hello hello hello hello hello hello hello hello hello hello bye bye bye
bye bye bye bye bye bye bye

https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/

Transformer blocks

• Process the embedded text input

• Made up of several sub-layers

• Attention heads alternating with feedforward networks

Transformer blocks

• Multi-head attention: Self-attention operates in multiple
"attention heads" to capture different types of
relationships between tokens.

• Feedforward neural networks: The output of the self-
attention layer is passed through feedforward layers.
These networks apply non-linear transformations to the
token representations, allowing the model to capture
complex patterns and relationships in the data.

https://www.ibm.com/topics/transformer-model

Attention heads

• Query, Key, Value, Residual

• Input a query and this acts as the key —> value is which
words that word “attends” to (well, a weighted combination
but yep)

https://mark-riedl.medium.com/a-very-gentle-introduction-to-large-language-models-without-the-hype-5f67941fa59e

LLMs

• In the end, they are almost sort of like really good search
on billions of examples of data—weighting what we want
next based on where we are

• We think of things like writing an essay as hard and
creative, but in some sense they are just borrowing from
us for ‘the hard part’ (the creativity, etc)

• Autoregressive (errors accumulate)

How do we train these?

• How do we train these? 175 billion parameters in chat
GPT

• Running out of data

https://arxiv.org/pdf/2001.08361.pdf

How do we train these?

• How do we train these? 175 billion parameters in chat
GPT

• Memorization

• Identifiability

