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Large language models

• ChatGPT (UM’s version: http://umgpt.umich.edu)


• Llama


• Bard



How are large language models (LLMs) like Chat-
GPT structured?

• GPT = Generative Pretrained Transformer


• Generative: generates the next word


• Pretrained: what it sounds like, i.e. trained ahead of time


• Transformer: the type of neural network model that many 
LLMs use


• Built to recognize and work with sequences of inputs to 
generate the next thing (you can do this with other stuff 
too, e.g. images —> video, genetic sequences, etc.)



LLMs

• Transformer models - how they work


• What are they trained on, what are they trained to do


• What they do/don’t do



How is are large language models (LLMs) like 
Chat-GPT structured?

• LLMs are built to predict the next word in a sequence


• Note the input  sequence in a chat-GPT session is the whole 
conversation so far

https://mark-riedl.medium.com/a-very-gentle-introduction-to-large-language-models-without-the-hype-5f67941fa59e



Text example, temperature

• Chat-GPT 2


• Input: “Complex systems is a fascinating”


• Top 5 most probable outputs:


• But if you just take the most probably output every time?

Adapted from: https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/



You get sort of repetitive nonsense



You get sort of repetitive nonsense



You need to inject some randomness (temperature)



Although it can take you in some funny directions 
depending how you set the level of randomness



Distribution of possible next words (notice it gets 
power-law-y)

Adapted from: https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/



Distribution of possible next words (notice it gets 
power-law-y)

Adapted from: https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/



How do you figure out word probabilities?  
Thinking about n-grams

• letter n-grams get better as we increase n


• word n-grams too (random vs 2-gram examples)

https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/



n-grams and word probabilities

• Why not just use really long n-grams? Should generate 
longer sequences of words with the right overall 
probabilities


• But we don’t have nearly enough data! Not enough 
English text in the world to do this


• Web: few hundred billion words 
Digitized books: ~hundred billion words. 

https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/



• 40,000 common words —> number of 2-grams = 1.6 
billion


• Number of possible 3-grams = 60 trillion


• 10 words? 20? More than would ever be possible to 
write down even if that’s all anyone ever did


• Instead build a model that lets us estimate the sequence 
probabilities even if we’ve never seen that exact input 
string—this is what LLMs do



Okay, so how do we do it? Usually something like:

• Tokenize: get the data in a numerical form we can work 
with


• Embed/encode the inputs


• Process them (attention, transformers, etc) - various 
blocks of neural networks here


• De-embed/decode 

• Spit out the next word you chose



Modular structure (blocks) in large AI models

http://jalammar.github.io/illustrated-stable-diffusion/
By Vectorization: Mrmw - Own work based on: Full GPT architecture.png:, 

CC0, https://commons.wikimedia.org/w/index.php?curid=146645810



Tokens

• There are ~50,000 commonly used words in the English 
language


• So we can take a piece of text and represent it as a 
sequence of numbers that encode which word


• But we do something slightly more efficient—tokens 
rather than words (this is part of why LLMs can 
sometimes produce weird made up words



Tokens

https://blogs.rstudio.com/ai/posts/2023-05-25-llama-tensorflow-keras/



Token examples

https://blogs.rstudio.com/ai/posts/2023-05-25-llama-tensorflow-keras/

More frequent tokens get lower IDs



Encoding/embedding: 

importance of dimension reduction

https://mark-riedl.medium.com/a-very-gentle-introduction-to-large-language-models-without-the-hype-5f67941fa59e



Even worse for longer input sequences

https://mark-riedl.medium.com/a-very-gentle-introduction-to-large-language-models-without-the-hype-5f67941fa59e



But many things functionally act the same in human 
language—we don’t need such high dimension

• Anything that means royalty can  
probably lead to the same word (e.g.  
throne vs. chair/toilet/horse/etc)


• This is part of how LLMs learn to understand language! 


• Forcing the model to  
reduce to a lower  
dimension means we have to  
learn common  
structures

https://mark-riedl.medium.com/a-very-gentle-introduction-to-large-language-models-without-the-hype-5f67941fa59e



Embedding helps capture meaning

https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/



Embedding

• How much did we crunch things down?


• 50K token options are converted (by a single-layer neural 
net) into an embedding vector of length 768 for GPT-2 and 
12,288 for ChatGPT’s GPT-3


• Knowing when to reduce dimension and when not to is part 
of the art that makes it not just a universal approximator


• E.g. compare to digits example in http://
neuralnetworksanddeeplearning.com/chap1.html (could 
do four output neurons but works much better with 10)

http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap1.html


Positional encoding

• Keep track of both the what the words are and their position relative to each 
other


• Process those two pieces of information together


• Example: hello hello hello hello hello hello hello hello hello hello bye bye bye 
bye bye bye bye bye bye bye

https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/



Transformer blocks

• Process the embedded text input


• Made up of several sub-layers


• Attention heads alternating with feedforward networks



Transformer blocks

• Multi-head attention: Self-attention operates in multiple 
"attention heads" to capture different types of 
relationships between tokens. 


• Feedforward neural networks: The output of the self-
attention layer is passed through feedforward layers. 
These networks apply non-linear transformations to the 
token representations, allowing the model to capture 
complex patterns and relationships in the data.

https://www.ibm.com/topics/transformer-model



Attention heads

• Query, Key, Value, Residual


• Input a query and this acts as the key —> value is which 
words that word “attends” to (well, a weighted combination 
but yep)

https://mark-riedl.medium.com/a-very-gentle-introduction-to-large-language-models-without-the-hype-5f67941fa59e



LLMs

• In the end, they are almost sort of like really good search 
on billions of examples of data—weighting what we want 
next based on where we are


• We think of things like writing an essay as hard and 
creative, but in some sense they are just borrowing from 
us for ‘the hard part’ (the creativity, etc)


• Autoregressive (errors accumulate)



How do we train these?

• How do we train these? 175 billion parameters in chat 
GPT

• Running out of data

https://arxiv.org/pdf/2001.08361.pdf



How do we train these?

• How do we train these? 175 billion parameters in chat 
GPT

• Memorization

• Identifiability


