| ecture 5: Cellular
Automata Dynamics

Complex Systems 530



Quick intro to dynamical
SysSiems concepts

* Since we're going to talk about dynamics of ABM,
CA, and other kinds of models, want to just briefly
introduce/refresh some terminology



Equiliorium Points

* Equilibrium Point - a set of values for the variables
such that the model will stay constant as time

evolves (I.e. all dx/dt = 0)

* Note that all variables must stay constant for the
whole system to be at equilibbrium



Equiliorium Points

 Examples - population growth, etc.
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 When are these systems at equilibrium? What do
the equilibria represent?



Types of Equilibria
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Transient vs Long-term

Behavior

portion of the model response that dies out/

goes to zero

* Transient -

* Long-term - persistent model behavioras f — ©
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e Stable/constant
steady state

e (Oscillation
e Chaos, etc.



Phase transitions/
bifurcations

* A phase transition is a “transition of macroscopic
properties of a collective system that occurs when
its environmental or internal conditions are varied”

* More generally, we often see bifurcations/

gualitative changes in behavior as we move across
parameter space



What are bifurcations”

* A bifurcation is a qualitative change in behavior as
parameters are varied

* [he parameter value where this change happens
s called a bifurcation point

* Can create or destroy fixed points, change
stablility, induce oscillations, & more



Qualitative changes in
pbehavior: population collapse

* Advanced fishing trawlers
introduced in 50’s/60’s

e Cod fishery collapse

e 1992 moratorium = 1952

300,000
. 200,000
* However, still not recovered 10000

(only 10-33% of original stock)

* What happened? Year

http://www.nature.com/nclimate/journal/v1/n4/pdf/nclimate1146.pdf



Qualitative changes in
pbehavior

Development of resistance in bacteria”? Biturcation or
just multiple equilibria”

Onset of cancer—can think of as a bifurcation from
controlled growth & death (equilibrium) to uncontrolled
growth

Wide range of other signaling mechanisms controlling
cell dynamics can be framed this way (cell cycling,
apoptosis, & more)

Switches between brain states—e.g. sleep, epilepsy



Epileptic Seizure EEG
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http://what-when-how.com/acp-medicine/epilepsy-part-1/



Not Just temporal changes:
vegetation patterns!

e Pattern formation in vegetation

 Changes in elevation/moisture/etc. can
cause surprising changes in plant patterns
across space!
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Vegetation patterns

le.com/maps/@11.1596025,28.2570965,8746m/data=!3m1!1e



https://www.google.com/maps/@11.1596025,28.2570965,8746m/data=!3m1!1e3
http://www.apple.com
https://www.google.com/maps/@11.1596025,28.2570965,8746m/data=!3m1!1e3
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Scheffer et al., 2009 - http://www.nature.com/nature/journal/v461/n7260/full/nature08227.html



Disease dynamics

 The most classic bifurcation point in infectious
disease epidemiology: Ro =1

 When Ro < 1 the disease-free equilibrium (DFE)
s stable (outbreak dies out)

« When Ro > 1, it Is unstable (epidemic!)
 Basically all intervention efforts & vaccine

campaigns are trying to push us across a
bifurcation point to eliminate disease



CA & ABM models with
phase transitions/bifurcations

* Many examples even if not formally proven to change
stability etc. (e.g. Schelling, voting model, etc.)

* [ry out together:
* Forest fire/percolation model
* Host pathogen model

» Other useful concepts from dynamical systems:
basins of attraction, bistability, etc.



Bifurcation vs. multiple
equilibria/long-term behaviors

* |n areal world setting, can be hard to distinguish!

* |n a model setting, bifurcations occur due to
changes Iin parameters

 \Whereas changes in the model behavior due to
multiple equilibria/multiple long-term behaviors
occur due to changes in the initial conditions of the

variables




How to explore the space of
CA behaviors?

* For simple models, we can examine the phase
space

 Phase space is the space (in this case a network)
of all possible states of the model



CA phase space

 How many different state configurations can we
have?

D = number of dimensions (1, 2, 3, etc.)
| =length in each dimension (number of cells)

* 1 =neighborhood radius (how many cells out to
consider)

kK = number of states (binary, more?)



How many different
configurations can we have”

. Total cells in the space: L”
 Each cell can be in one of k states

. . . L
* Total possible configurations for the system: &

. E.g., a 2D 10x10 binary CA has 210" = 1,048, 576
possible configurations



CA rule space

How many different rules (CAs) can we have”?

Total cells in neighborhood (including self):

(2r +1)"

Total possible configurations for a single neighborhood

(termed situations):

k(Qr—l—l)D

nossible rules (CAS) is:

p(2r+1) P

-or each situation we map to a resulting state, so total

Very big!



Phase space

* Phase space is the space of all possible states of
the model—tfor CA this is discrete, and finite if we
have a finite domain

* We can map how one configuration of the model
moves to another—torms a network

 Phase space comes from the analogous idea for
continuous dynamical systems—there we have a
continuous flow from one state to another, for CA
we have a directed network



Phase space

 How to map the network of transitions between
states”

 We can translate a configuration of space into a
binary number, and use this to label each space

* Connect edges from each
configuration to the next as
igurati | X
we step through time

000




Phase Space

We can use the network structure to understand the
dynamics of CAs

Gets tricky for larger grid spaces—many more nodes in
the network

Many of the usual approaches for understanding
networks can be used to examine dynamics (cycles,
connectedness, etc.)

Similar to state transition diagram/matrix tor Markov
models



Phase Space Example

Binary 1D CA, neighborhood radius 2
9 cells in ring arrangement (wrapped boundary)
‘Majority rule’

Total possible configurations = 2° = 512
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Phase Space Example

Many different basins of attraction, i.e. network
components

2 larger basins of attraction—explore with PyCX
code

What is structure overall? What does it look like the
majority rule model will do”?

Explore together



Phase Space

* For larger grid sizes, can be much more
complicated, networks can become hairball-like

e Some dynamic patterns run for a long time before
stabilizing, e.g. the ‘rabbit’ in Game of Lite takes
17,331 steps to stabilize (a very long path in the
phase space network)



Phase space exploration

* Code phase space for several 1D CA using
example code

* EXxplore together
e ook for:
e Attracting subsets, cycles, gardens of eden

 What do these correspond to dynamically?



Mean-field approximation

* As CA get more complicated, direct examination of
phase space becomes more challenging

* Mean field approximations give one way to understand
the dynamics in a very(!) rough way

 Mean tield approximation describes the overall average
state of the system over time (i.e. how many on/off cells
on average)

e Much lower dimension—Dbut also loses most of what
makes CA interesting”?



Mean-field approximation
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Figure 12.2: Basic idea of the mean-field approximation.

Sayama p. 216 (Chp. 12)




Mean-field approximation

* Consider a 2D binary CA with majority rule

e |et pt be the density of 1's (on state) in the grid at
time t

 We can treat the system probabilistically—work out
the probability that a cell would transition on/oft
given the rules, with no particular knowledge of the
exact actual configuration of any given cell




Mean-field approximation

Table 12.1: Possible scenarios of state transitions for binary CA with the majority rule.

Current state Neighbors’ states Next state  Probability of this transition

0 Four 1's or fewer 0 (1 —p) Z <i>p’f(1 — p)EH)
k=0
0 Five 1's or more 1 (1 —p) 8 (2);%(1 — p)BH)
k=5
1 Three 1's or fewer 0 pi (i) pF(1 — p)EH)
k=0
1 Four 1’s or more 1 p 8 (i)ﬁ(l — p)ER)
k=4

e p(state) x p(neighbors’ states)

Sayama p. 217 (Chp. 12)



Mean-field approximation

Table 12.1: Possible scenarios of state transitions for binary CA with the majority rule.

Current state Neighbors’ states Next state  Probability of this transition

4
0 Four 1's or fewer 0 (1 —p) Z <8>pk(1 — p)EH)

Five 1’s or more

1 Three 1’s or fewer 0 D (8)pk(1 — p)EH)

* Di+1 = P(state is a 1 at next time step)

Sayama p. 217 (Chp. 12)



Mean-field approximation

— 70p° — 315p% + 540p" — 420p° + 126p°



Mean-field approximation

* (Gives us a simple, 1-dimensional difference
eqguation that we can use to track the overall
orobability/density of 1's vs. O's in the system

* Can determine po from initial conditions and then
simulate forward



Cobweb plot

1.0

e Plots current value vs next
value

0.8f

Pt+1 | e Straight line of y = x

* Model tunction plotted as the
0.2} | curve,

Dt4-1= 70p° — 315p° + 540p" — 420p° + 126p°

0.0 0.2 0.4 0.6 0.8 1.0

Ot * Where these two Iintersect, we
Figure 12.3: Gobweb plot of Eq. (12.10). have an equilibrium point!



Cobweb plot

1.0

* |n this case, the cobweb plot
shows 3 equilibria

Pt+1 | o All O - stable
e All 1-stable

0.2}

e Half-and-half - unstable

.6 0.8 1.0

h Ot O * How true is this to the real CA?

0.0 0.2

Figure 12.3: Cobweb plot of Eq. (12.10). Why?



Mean-field approximation

* Does not account for spatial features of the system!

* |t will necessarily be very approximate and
represent only the "average” behavior of the
system assuming all cells experience a
homogeneous ‘neighborhood

* |s this a good approximation for most CA?

e See also the renormalization group approach for
percolation (Sayama Chapter 12)



Extensions to CA

» Stochastic (probabilistic) CA - state transitions
happen with some probability based on
neighboring states (cf. Markov chains)

* Multi-layer CA - state values as vectors, e.g. may
capture multiple properties or attributes of the
agent, or different agents living on the same cell

 Asynchronous CA - updates non-simultaneously
(e.g. random, ordered, state-triggered)



A note about spacesnips &
other structures

Many spaceships and other stable patterns in CA
An interesting question of whether these are “real”?

The CA is made of cells, they do all the operations
of the model

The patterns we observe are = N g ‘-
not actual objects—just ¥
persistent patterns that we name
treat as separate entities

xr



A note about spacesnips
and other structures

* Although, this can be said of a lot of things” (E.Q.
storms, maybe even people?)

 Doesn’t necessarily make the objects in CAs less
real because they are composed of cells



For next time...

* Reading
e Sayama Chapter 12

* Think Complexity Chapter 7



