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Quick intro to dynamical 
systems concepts

• Since we’re going to talk about dynamics of ABM, 
CA, and other kinds of models, want to just briefly 
introduce/refresh some terminology



Equilibrium Points

• Equilibrium Point - a set of values for the variables 
such that the model will stay constant as time 
evolves (i.e. all dx/dt = 0)


• Note that all variables must stay constant for the 
whole system to be at equilibrium



Equilibrium Points
• Examples - population growth, etc.


• 1) 

• 2)


• When are these systems at equilibrium?  What do 
the equilibria represent?
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Types of Equilibria
• Stable  

• Unstable  

• Neutral  

• Saddle 



Phase plane/phase space: tells us what 
the model does for any given initial 

conditions of the modelPhase Plane

and many others...



Transient vs Long-term 
Behavior

• Transient - portion of the model response that dies out/
goes to zero


• Long-term - persistent model behavior as 


• Unstable


• Stable/constant  
steady state


• Oscillation


• Chaos, etc.

t→∞

Long-term

Transient



Phase transitions/
bifurcations

• A phase transition is a “transition of macroscopic 
properties of a collective system that occurs when 
its environmental or internal conditions are varied”


• More generally, we often see bifurcations/
qualitative changes in behavior as we move across 
parameter space



What are bifurcations?

• A bifurcation is a qualitative change in behavior as 
parameters are varied


• The parameter value where this change happens 
is called a bifurcation point


• Can create or destroy fixed points, change 
stability, induce oscillations, & more



Qualitative changes in 
behavior: population collapse
• Advanced fishing trawlers 

introduced in 50’s/60’s


• Cod fishery collapse


• 1992 moratorium


• However, still not recovered 
(only 10-33% of original stock)


• What happened?

http://www.nature.com/nclimate/journal/v1/n4/pdf/nclimate1146.pdf



Qualitative changes in 
behavior

• Development of resistance in bacteria? Bifurcation or 
just multiple equilibria?


• Onset of cancer—can think of as a bifurcation from 
controlled growth & death (equilibrium) to uncontrolled 
growth


• Wide range of other signaling mechanisms controlling 
cell dynamics can be framed this way (cell cycling, 
apoptosis, & more)


• Switches between brain states—e.g. sleep, epilepsy



Epileptic Seizure EEG

http://what-when-how.com/acp-medicine/epilepsy-part-1/



Not just temporal changes:

vegetation patterns!

• Pattern formation in vegetation


• Changes in elevation/moisture/etc. can 
cause surprising changes in plant patterns 
across space!

Negev, IsraelSouth Sudan

J. von Hardenberg/BIDR/Ben Gurion Univ. 
Google Earth


Alan Turing



Vegetation patterns

https://www.google.com/maps/@11.1596025,28.2570965,8746m/data=!3m1!1e3

https://www.google.com/maps/@11.1596025,28.2570965,8746m/data=!3m1!1e3
http://www.apple.com
https://www.google.com/maps/@11.1596025,28.2570965,8746m/data=!3m1!1e3


Vegetation patterns

Scheffer et al., 2009 - http://www.nature.com/nature/journal/v461/n7260/full/nature08227.html



Disease dynamics
• The most classic bifurcation point in infectious 

disease epidemiology: R0 = 1 

• When R0 < 1 the disease-free equilibrium (DFE) 
is stable (outbreak dies out)


• When R0 > 1, it is unstable (epidemic!)


• Basically all intervention efforts & vaccine 
campaigns are trying to push us across a 
bifurcation point to eliminate disease



CA & ABM models with 
phase transitions/bifurcations
• Many examples even if not formally proven to change 

stability etc. (e.g. Schelling, voting model, etc.) 


• Try out together:


• Forest fire/percolation model


• Host pathogen model


• Other useful concepts from dynamical systems: 
basins of attraction, bistability, etc.



Bifurcation vs. multiple 
equilibria/long-term behaviors
• In a real world setting, can be hard to distinguish!


• In a model setting, bifurcations occur due to 
changes in parameters


• Whereas changes in the model behavior due to 
multiple equilibria/multiple long-term behaviors 
occur due to changes in the initial conditions of the 
variables



How to explore the space of 
CA behaviors?

• For simple models, we can examine the phase 
space


• Phase space is the space (in this case a network) 
of all possible states of the model



CA phase space
• How many different state configurations can we 

have?


• D = number of dimensions (1, 2, 3, etc.)


• L = length in each dimension (number of cells)


• r = neighborhood radius (how many cells out to 
consider)


• k = number of states (binary, more?)



How many different 
configurations can we have?

• Total cells in the space: 


• Each cell can be in one of k states


• Total possible configurations for the system:


• E.g., a 2D 10x10 binary CA has 
possible configurations

LD

kL
D

210
2

= 1, 048, 576



CA rule space
• How many different rules (CAs) can we have?


• Total cells in neighborhood (including self): 

• Total possible configurations for a single neighborhood 
(termed situations): 

• For each situation we map to a resulting state, so total 
possible rules (CAs) is: 

(2r + 1)D

k(2r+1)D

kk
(2r+1)D

Very big! 



Phase space
• Phase space is the space of all possible states of 

the model—for CA this is discrete, and finite if we 
have a finite domain


• We can map how one configuration of the model 
moves to another—forms a network


• Phase space comes from the analogous idea for 
continuous dynamical systems—there we have a 
continuous flow from one state to another, for CA 
we have a directed network



Phase space
• How to map the network of transitions between 

states?


• We can translate a configuration of space into a 
binary number, and use this to label each space


• Connect edges from each  
configuration to the next as  
we step through time
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Figure 6.1: Rule 50 after 10 time steps.

In the early 1980s Stephen Wolfram published a series of papers presenting a systematic
study of 1-dimensional CAs. He identified four general categories of behavior, each more
interesting than the last.

To say that a CA has dimensions is to say that the cells are arranged in a contiguous space
so that some of them are considered “neighbors.” In one dimension, there are three natural
configurations:

Finite sequence: A finite number of cells arranged in a row. All cells except the first and
last have two neighbors.

Ring: A finite number of cells arranged in a ring. All cells have two neighbors.

Infinite sequence: An infinite number of cells arranged in a row.

The rules that determine how the system evolves in time are based on the notion of a
“neighborhood,” which is the set of cells that determines the next state of a given cell. Wol-
fram’s experiments use a 3-cell neighborhood: the cell itself and its left and right neighbors.

In these experiments, the cells have two states, denoted 0 and 1, so the rules can be sum-
marized by a table that maps from the state of the neighborhood (a tuple of 3 states) to the
next state for the center cell. The following table shows an example:

prev 111 110 101 100 011 010 001 000
next 0 0 1 1 0 0 1 0

The row first shows the eight states a neighborhood can be in. The second row shows the
state of the center cell during the next time step. As a concise encoding of this table, Wol-
fram suggested reading the bottom row as a binary number. Because 00110010 in binary is
50 in decimal, Wolfram calls this CA “Rule 50.”

Figure 6.1 shows the effect of Rule 50 over 10 time steps. The first row shows the state of
the system during the first time step; it starts with one cell “on” and the rest “off”. The
second row shows the state of the system during the next time step, and so on.

The triangular shape in the figure is typical of these CAs; is it a consequence of the shape of
the neighborhood. In one time step, each cell influences the state of one neighbor in either
direction. During the next time step, that influence can propagate one more cell in each
direction. So each cell in the past has a “triangle of influence” that includes all of the cells
that can be affected by it.

0 0 1 0 0  = 4
0 1 0 1 0  = 10
1 0 1 0 1  = 21

4 10 21



Phase Space
• We can use the network structure to understand the 

dynamics of CAs 


• Gets tricky for larger grid spaces—many more nodes in 
the network


• Many of the usual approaches for understanding 
networks can be used to examine dynamics (cycles, 
connectedness, etc.)


• Similar to state transition diagram/matrix for Markov 
models



Phase Space Example

• Binary 1D CA, neighborhood radius 2


• 9 cells in ring arrangement (wrapped boundary)


• ‘Majority rule’


• Total possible configurations = 29 = 512
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states in CA terminology.

Figure 12.1: Graph-based phase space of the 1-D binary CA model with the majority
rule (r = 2, L = 9) drawn with Code 12.3.

Exercise 12.4 Measure the number of states in each of the basins of attraction
shown in Fig. 12.1, and draw a pie chart to show the relative sizes of those basins.
Look up matplotlib’s online references to find out how to draw a pie chart. Then
discuss the findings.



Phase Space Example
• Many different basins of attraction, i.e. network 

components


• 2 larger basins of attraction—explore with PyCX 
code


• What is structure overall? What does it look like the 
majority rule model will do?


• Explore together



Phase Space

• For larger grid sizes, can be much more 
complicated, networks can become hairball-like


• Some dynamic patterns run for a long time before 
stabilizing, e.g. the ‘rabbit’ in Game of Life takes 
17,331 steps to stabilize (a very long path in the 
phase space network)



Phase space exploration
• Code phase space for several 1D CA using 

example code


• Explore together


• Look for:


• Attracting subsets, cycles, gardens of eden


• What do these correspond to dynamically?



Mean-field approximation
• As CA get more complicated, direct examination of 

phase space becomes more challenging


• Mean field approximations give one way to understand 
the dynamics in a very(!) rough way


• Mean field approximation describes the overall average 
state of the system over time (i.e. how many on/off cells 
on average)


• Much lower dimension—but also loses most of what 
makes CA interesting?
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Actual State Approximated State 

Mean-field 
approximation 

Average state 
 

p: density of ■’s 
(mean field) 

Individual cell 

interaction interaction 

Figure 12.2: Basic idea of the mean-field approximation.

matter how large the space is, the system’s state is approximated just by one variable:
the density of 1’s, pt. This is the mean field, and now our task is to describe its dynamics
in a difference equation.

When we derive a new difference equation for the average state, we no longer have
any specific spatial configuration; everything takes place probabilistically. Therefore, we
need to enumerate all possible scenarios of an individual cell’s state transition, and then
calculate the probability for each scenario to occur.

Table 12.1 lists all possible scenarios for the binary CA with the majority rule. The
probability of each state transition event is calculated by (probability for the cell to take
the “Current state”) ⇥ (probability for the eight neighbors to be in any of the “Neighbors’
states”). The latter is the sum of (number of ways to arrange k 1’s in 8 cells) ⇥ (probability
for k cells to be 1) ⇥ (probability for 8�k cells to be 0) over the respective range of k. You
may have learned about this kind of combinatorial calculation of probabilities in discrete
mathematics and/or probability and statistics.

Exercise 12.6 Confirm that the probabilities listed in the last column of Table 12.1
are a valid probability distribution, i.e., that the sum of them is 1.

To write a difference equation of pt, there are only two scenarios we need to take
into account: the second and fourth ones in Table 12.1, whose next state is 1. This is

Sayama p. 216 (Chp. 12)



Mean-field approximation

• Consider a 2D binary CA with majority rule


• Let      be the density of 1’s (on state) in the grid at 
time t


• We can treat the system probabilistically—work out 
the probability that a cell would transition on/off 
given the rules, with no particular knowledge of the 
exact actual configuration of any given cell

pt



Mean-field approximation

• p(state) x p(neighbors’ states)
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Table 12.1: Possible scenarios of state transitions for binary CA with the majority rule.

Current state Neighbors’ states Next state Probability of this transition

0 Four 1’s or fewer 0 (1� p)
4X

k=0

✓
8

k

◆
p
k(1� p)(8�k)

0 Five 1’s or more 1 (1� p)
8X

k=5

✓
8

k

◆
p
k(1� p)(8�k)

1 Three 1’s or fewer 0 p

3X

k=0

✓
8

k

◆
p
k(1� p)(8�k)

1 Four 1’s or more 1 p

8X

k=4

✓
8

k

◆
p
k(1� p)(8�k)

because the next value of the average state, pt+1, is the probability for the next state to be
1. Therefore, we can write the following difference equation (the subscript of pt is omitted
on the right hand side for simplicity):

pt+1 = (1� p)
8X

k=5

✓
8

k

◆
p
k(1� p)(8�k) + p

8X

k=4

✓
8

k

◆
p
k(1� p)(8�k) (12.6)

=
8X

k=5

✓
8

k

◆
p
k(1� p)(8�k) + p

✓
8

4

◆
p
4(1� p)4 (12.7)

=

✓
8

5

◆
p
5(1� p)3 +

✓
8

6

◆
p
6(1� p)2 +

✓
8

7

◆
p
7(1� p) +

✓
8

8

◆
p
8 + 70p5(1� p)4

(12.8)

= 56p5(1� p)3 + 28p6(1� p)2 + 8p7(1� p) + p
8 + 70p5(1� p)4 (12.9)

= 70p9 � 315p8 + 540p7 � 420p6 + 126p5 (12.10)

This result may still seem rather complicated, but it is now nothing more than a one-
dimensional nonlinear iterative map, and we already learned how to analyze its dynamics
in Chapter 5. For example, we can draw a cobweb plot of this iterative map by replacing
the function f(x) in Code 5.4 with the following (you should also change xmin and xmax

to see the whole picture of the cobweb plot):

Code 12.4: cobweb-plot-for-mfa.py
def f(x):

return 70*x**9 - 315*x**8 + 540*x**7 - 420*x**6 + 126*x**5

Sayama p. 217 (Chp. 12)



Mean-field approximation

• pt+1 = p(state is a 1 at next time step)
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Mean-field approximation
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dimensional nonlinear iterative map, and we already learned how to analyze its dynamics
in Chapter 5. For example, we can draw a cobweb plot of this iterative map by replacing
the function f(x) in Code 5.4 with the following (you should also change xmin and xmax

to see the whole picture of the cobweb plot):

Code 12.4: cobweb-plot-for-mfa.py
def f(x):

return 70*x**9 - 315*x**8 + 540*x**7 - 420*x**6 + 126*x**5



Mean-field approximation

• Gives us a simple, 1-dimensional difference 
equation that we can use to track the overall 
probability/density of 1's vs. 0's in the system


• Can determine p0 from initial conditions and then 
simulate forward



Cobweb plot
• Plots current value vs next 

value


• Straight line of y = x


• Model function plotted as the 
curve,  

• Where these two intersect, we 
have an equilibrium point!
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This produces the cobweb plot shown in Fig. 12.3. This plot clearly shows that there
are three equilibrium points (p = 0, 1/2, and 1), p = 0 and 1 are stable while p = 1/2 is
unstable, and the asymptotic state is determined by whether the initial value is below or
above 1/2. This prediction makes some sense in view of the nature of the state-transition
function (the majority rule); interaction with other individuals will bring the whole system
a little closer to the majority choice, and eventually everyone will agree on one of the two
choices.

Figure 12.3: Cobweb plot of Eq. (12.10).

However, we should note that the prediction made using the mean-field approxima-
tion above doesn’t always match what actually happens in spatially explicit CA models.
In simulations, you often see clusters of cells with the minority state remaining in space,
making it impossible for the whole system to reach a unanimous consensus. This is be-
cause, after all, mean-field approximation is no more than an approximation. It produces
a prediction that holds only in an ideal scenario where the spatial locality can be ignored
and every component can be homogeneously represented by a global average, which,
unfortunately, doesn’t apply to most real-world spatial systems that tend to have non-
homogeneous states and/or interactions. So you should be aware of when you can apply
mean-field approximation, and what are its limitations, as summarized below:

pt

pt+1
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Table 12.1: Possible scenarios of state transitions for binary CA with the majority rule.

Current state Neighbors’ states Next state Probability of this transition
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because the next value of the average state, pt+1, is the probability for the next state to be
1. Therefore, we can write the following difference equation (the subscript of pt is omitted
on the right hand side for simplicity):
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= 70p9 � 315p8 + 540p7 � 420p6 + 126p5 (12.10)

This result may still seem rather complicated, but it is now nothing more than a one-
dimensional nonlinear iterative map, and we already learned how to analyze its dynamics
in Chapter 5. For example, we can draw a cobweb plot of this iterative map by replacing
the function f(x) in Code 5.4 with the following (you should also change xmin and xmax

to see the whole picture of the cobweb plot):

Code 12.4: cobweb-plot-for-mfa.py
def f(x):

return 70*x**9 - 315*x**8 + 540*x**7 - 420*x**6 + 126*x**5

pt+1



Cobweb plot

• In this case, the cobweb plot 
shows 3 equilibria


• All 0 - stable


• All 1 - stable


• Half-and-half - unstable


• How true is this to the real CA? 
Why?
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are three equilibrium points (p = 0, 1/2, and 1), p = 0 and 1 are stable while p = 1/2 is
unstable, and the asymptotic state is determined by whether the initial value is below or
above 1/2. This prediction makes some sense in view of the nature of the state-transition
function (the majority rule); interaction with other individuals will bring the whole system
a little closer to the majority choice, and eventually everyone will agree on one of the two
choices.

Figure 12.3: Cobweb plot of Eq. (12.10).

However, we should note that the prediction made using the mean-field approxima-
tion above doesn’t always match what actually happens in spatially explicit CA models.
In simulations, you often see clusters of cells with the minority state remaining in space,
making it impossible for the whole system to reach a unanimous consensus. This is be-
cause, after all, mean-field approximation is no more than an approximation. It produces
a prediction that holds only in an ideal scenario where the spatial locality can be ignored
and every component can be homogeneously represented by a global average, which,
unfortunately, doesn’t apply to most real-world spatial systems that tend to have non-
homogeneous states and/or interactions. So you should be aware of when you can apply
mean-field approximation, and what are its limitations, as summarized below:

pt
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Mean-field approximation
• Does not account for spatial features of the system! 


• It will necessarily be very approximate and 
represent only the “average” behavior of the 
system assuming all cells experience a 
homogeneous ‘neighborhood’


• Is this a good approximation for most CA?


• See also the renormalization group approach for 
percolation (Sayama Chapter 12)



Extensions to CA
• Stochastic (probabilistic) CA - state transitions 

happen with some probability based on 
neighboring states (cf. Markov chains)


• Multi-layer CA - state values as vectors, e.g. may 
capture multiple properties or attributes of the 
agent, or different agents living on the same cell


• Asynchronous CA - updates non-simultaneously 
(e.g. random, ordered, state-triggered)



A note about spaceships & 
other structures

• Many spaceships and other stable patterns in CA


• An interesting question of whether these are “real”?


• The CA is made of cells, they do all the operations 
of the model


• The patterns we observe are  
not actual objects—just  
persistent patterns that we name and  
treat as separate entities



A note about spaceships 
and other structures

• Although, this can be said of a lot of things? (E.g. 
storms, maybe even people?) 


• Doesn’t necessarily make the objects in CAs less 
real because they are composed of cells



For next time…

• Reading


• Sayama Chapter 12


• Think Complexity Chapter 7


