
Lecture 7: Dynamics 
on and of Networks

Complex Systems 530



How to generate networks?
• Real world networks (static or dynamic)—lots of 

network data out there 

• Random networks! 

• Many of these can be used either as  

• static networks to run dynamics on, or  

• models of dynamics of networks



Random Networks
• Why would you want to do this? 

• Often want to simulate network formation or 
simulate dynamics on networks 

• May not know exact network 

• But often do know some general features of the 
network (e.g. degree distribution) 

• So: simulate random networks with those features



Erdös-Rényi Networks
• Erdös–Rényi (also Gilbert) Network - two forms: 

• G(n,p) - network on n nodes with each edge 
having probability p of existing 

• G(n,M) - network on n nodes with M edges 
chosen randomly 

• Often called a “random graph” even though all 
of the networks here are also random



G(n,p)

G(10,0.2)
G(30,0.3)

G(10,0.6)



G(n,M)
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Erdös-Rényi Networks
• Not so realistic for lots of things (e.g. social 

networks, many gene/protein/biological networks) 

• But, often handy as a test case/comparison point 
(e.g. if evaluating whether a mean-field model is a 
reasonable approximation) 

• Useful for making analogs of homogeneous mixing 
(e.g. from SIR or compartmental models)



Erdös-Rényi Networks

• Let you sample from the full space of possible 
graphs with minimal assumptions 

• If a property of a network is reproduced by ER, may 
suggest it’s not a special feature of the network 
driving it—alternatively if ER does not reproduce 
this property, it may be more “interesting”



Erdös-Rényi Networks

• Lots of mathematical theory for random matrices 
(e.g. useful for examining adjacency matrices) and 
random graphs, particularly for Erdös-Renyi 
graphs, e.g. 

• Degree distribution, giant component, etc.



Milgram’s Small World 
Experiment

• Sent packages to random people in Wichita, 
Kansas 

• Letter inside asked them to forward to a target 
person in Sharon, Massachusetts 

• Told they could mail the letter directly to the target 
person only if they knew him personally, otherwise 
send it & instructions to a relative or friend they 
thought would be more likely to know the target 
person 



Milgram’s Small World 
Experiment

• Many letters didn’t make it, but among those that 
did, average path length was 6 

• “Six degrees of separation” 

• How to generate a small world network?



Small World Networks

• Regular graphs: clustered, but path length L grows 
linearly with number of nodes n 

• Erdös-Rényi graphs: not clustered but small path 
length (grows as log n) 

• Want to combine both



Newman-Watts-Strogatz 
Algorithm



Small World Networks

• Most nodes are not neighbors of one another, but 
most nodes can be reached from every other by a 
small number of hops or steps 

• Average distance L between two  
nodes is proportional to log n  
(where n is the number of nodes)



Small World Network
• Creates the “what a small world!” effect: two nodes 

will tend to have a mutual friend (adjacent node)  

• Can be similar to scale free in that can produce 
hubs as well as sparsely connected individuals  

• Network can be both small-world and scale-free 

• However, N-W-S tends to produce more similar 
degrees for nodes rather than scale free



Preferential Attachment 
Networks

• Barabasi-Albert algorithm 

• Add new nodes to the network  
sequentially, preferentially  
connecting them to  
high-degree nodes 
 

• Generates scale free  
networks



Preferential Attachment

• “Rich get richer” (Matthew effect) dynamics make 
hubs 

• Can also implement as a growth process from an 
existing network



Configuration Models
• Given a degree sequence, generate random 

network with that sequence 

• Random graphs, but with the advantage that the 
degree sequence can be chosen realistically 

• Algorithm: generate ‘stubs’ with the correct degree, 
then connect pairs of stubs



Configuration Models
• Provides a way to generate random networks 

consistent with a real-world degree sequence/
distribution  

• Often have non-network data that tells us about 
degree (egocentric data) 

• Or may want to explore the space of graphs that 
are ‘similar’ to a known network



Types of network dynamics
• Dynamics on networks: models where the 

processes of interest occur over a fixed network 
structure 

• Dynamics of networks: models of the dynamic 
changes over time of the network topology itself  

• Adaptive networks: models looking at the 
interplay of the two (both the processes on the 
network, and how the network changes)

Sayama, Chp. 16



Dynamics on Networks

• Dynamics on nodes and/or edges? 

• What variables to consider? 

• Discrete vs. continuous variables 

• Deterministic vs. stochastic



Dynamics on Networks

• How to update? 

• Discrete vs. continuous time 

• Synchronous, asynchronous, continuous



Dynamics on Networks

• Discrete variable, discrete time—similar to CA! Just 
a different set of neighbors 

• Implementation is very similar 

• CA models are network models! Using a regular 
graph with a lattice structure with degree 4 or 8



Example: infectious 
transmission on a network

• Infectious diseases, information/idea/culture 
propagation, behavioral dynamics (e.g. 
transmission of alcohol use behaviors) 

• Nodes may be individuals, or they can be 
communities 

• Edges indicate contact between individuals or 
communities, or potentially movement between 
communities



Example: infectious 
transmission on a network

• Each node may be assigned a status (susceptible/
infectious/recovered) 

• Or a vector/number (number of infected in that 
node, numbers of S/I/R in that node) 

• E.g. run an SIR model in each node but allow 
transmission within-node or between-node



Individual-level network models 
of disease transmission



Individual-level network models 
of disease transmission

• Virus on a network example in NetLogo models 
library 

• PyCX has several examples 

• Let’s code one together!



Population level network 
model of disease transmission

• Can model population transmission on a network 
as an agent-based model or non-agent based 
model (e.g. ODE, stochastic model)



EVD in West Africa
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D’Silva JP, Eisenberg MC. Modeling spatial invasion of Ebola in West Africa. Journal of theoretical biology. 2017 Sep 7;428:65-75.



Model Equations
finely capture the progression of the illness). The corresponding equations for Figure 1 are:

dS

dt
= �(�II1 + �2I2 + �FF )S

dE

dt
= (�II1 + �2I2 + �FF )S � ↵E

dI1
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(1)

where S represents the fraction of the population which is susceptible, E the fraction exposed,
I1 the fraction in the first stage of infection, I2 the second stage of infection, R the fraction of
the population which who are recently recovered (i.e. who would still require an ETU bed if
hospitalized), and F the fraction of the population who have died and are in the process of being
buried (as funerals provide an alternate route of transmission as in the models based on [31]).

We note that although recovered individuals have some chance of transmission for up to seven
weeks after recovery (e.g. via semen or breast milk [35]), for simplicity we do not include the
transmission in these later stages. For book-keeping purposes we track recently recovered (R),
in order to estimate the total number of ETU beds needed over time. This does not a↵ect the
dynamics of infection since the recovered individuals are assumed to have full immunity and to
be unable to transmit the virus. Because we consider only relatively short time frame here (< 1
year), for simplicity we ignore population background births and deaths. Lastly, we note that this
simplified model lumps together both community and hospital/ETU infected.

The model structure is somewhat similar to the SEIHFR model of Legrand et al. [31], in which
infected individuals in the community (I) can be admitted to the hospital (H), but the progression
in this model is through the natural history of the disease rather than from household to hospital.
Thus, there are di↵erent mechanistic assumptions underlying the two models, so that even though
the resulting compartmental diagrams are similar, there are important di↵erences in the flows be-
tween compartments. For example, SEIHFR models typically assume lower transmission in the
ETU stage [23], which contrasts with the higher transmission rates in the second stage of infection
used here; additionally, mortality is significantly higher for infected individuals in the community
than in the hospital, where by contrast there is higher recovery in the first stage and death only
after the second stage of infection in the model used here. In subsequent sections of this paper we
also consider an expanded model that includes compartments for infected individuals admitted to
an ETU, which allows us to capture both the stage structure and ETU dynamics.

Basic Reproduction Number. Using the second-generation matrix approach [37, 38], the basic
reproduction number for the model is given by:

R0 =
�1

�1
+

�2�1

�2
+

�F �1�2

�F
. (2)

where R0 for the system breaks into three portions based on each transmission stage, weighted by
the fraction of individuals who reach that stage and the amount of time spent in each stage (as is
typical for stage structured models [38]).
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Measure: cumulative cases & deaths
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Spatial network
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D’Silva JP, Eisenberg MC. Modeling spatial invasion of Ebola in West Africa. Journal of theoretical biology. 2017 Sep 7;428:65-75.



Gravity Model
• Model of transmission or movement between 

locations 

• Suppose that contact is higher with regions that are 
larger (population centers), and regions that are 
closer  

• Scale transmission or movement using ‘gravity’ 
term: 

✓ij =
NiNj

d2ij



D’Silva JP, Eisenberg MC. Modeling spatial invasion of Ebola in West Africa. Journal of theoretical biology. 2017 Sep 7;428:65-75.



Parameter Estimation
• Estimate parameters from incidence data on cases 

and deaths 

• Some parameter information from the literature and 
from ongoing reporting of incubation period, 
infectious period, etc. 

• Extensive uncertainty and issues of unidentifiability! 

• Many different parameter values will fit the data 
equally (or close to equally) well
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More granular: modeling at 
the district level

• Extend the model to the 63 districts in Guinea, 
Liberia, and Sierra Leone 

• Adapt the model to be stochastic (since some 
districts have small population)



D’Silva JP, Eisenberg MC. Modeling spatial invasion of Ebola in West Africa. Journal of theoretical biology. 2017 Sep 7;428:65-75.
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Epidemic Dynamics  
on Networks

• Network structure plays a huge role on the 
epidemic dynamics 

• Hubs, sparsely connected, etc. 

• Small world property can tend to produce 
synchronized epidemics (e.g. oscillations)



Epidemic Dynamics  
on Networks

• Where you place high-risk individuals or patches 
can significantly affect R0, disease dynamics, etc. 

• E.g. if cluster high-risk nodes together vs spread 
apart 

• If hub vs periphery is infected - the scale free 
vulnerability to hub attacks



Epidemic Dynamics  
on Networks

• How would interventions/risk/dynamics differ for 
epidemic spread by roads vs air travel? (and what 
does this mean for pandemics & emerging 
diseases/behaviors)



Epidemic Dynamics  
on Networks

• Major & still very open area of research 

• Can have significant impact on interventions & 
control strategies 

• Should you target well-connected individuals?  

• Are there specific network structures you should 
look for as high-risk?



Epidemic Dynamics  
on Networks

• Lots of interesting data to work with too—can often 
track contacts, etc.  

• Example: the  
eX-FLU study  
(Aiello et al.) 

• Substudy tracking  
contacts using  
Bluetooth from  
cell phones

Aiello AE, Simanek AM, Eisenberg MC, Walsh AR, Davis B, Volz E, Cheng C, Rainey JJ, Uzicanin A, Gao H, Osgood N. Design and methods of a social network isolation study for reducing 
respiratory infection transmission: The eX-FLU cluster randomized trial. Epidemics. 2016 Jun 1;15:38-55.



Example: power grids

By Paul Cuffe - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/
index.php?curid=70226122

SMART-DS: Synthetic Models for Advanced, Realistic Testing: Distribution 
Systems and Scenarios 
https://www.nrel.gov/grid/smart-ds.html



Example: Neuronal networks
• Firing dynamics on 

networks used extensively 
in mathematical/
computational 
neuroscience 

• Example: ring model of 
direction sense! 

• Proposed as a model in 
the 1990’s—this 
mechanism has since 
been found!

Skaggs, WE., et al. "A model of the neural basis of the rat's sense of direction." 
Advances in neural information processing systems. 1995.



Kim, Sung Soo, et al. "Ring attractor dynamics in the Drosophila central brain." Science 356.6340 (2017): 849-853.



2017: Found the ring network 
in Drosophila (fruit fly)!

Kim, Sung Soo, et al. "Ring attractor dynamics in the Drosophila central brain." Science 356.6340 (2017): 849-853.





Example: information 
gerrymanderingLETTERRESEARCH

information gerrymandering arises when one party punches above 
its weight by distributing its influence on a network so as to flip a 
disproportionate number of persuadable voters. To understand how 
a party can gain such an advantage, we adapt the principles of elec-
toral gerrymandering—in which voting districts are drawn so that 
one party wins a disproportionate number of seats15—to construct 
influence networks in which one party has an advantage in persuad-
ing voters and the other party wastes much of its social influence 
(Fig. 2d, Supplementary Information section 4 and Supplementary 
Video 1).

To study information gerrymandering, we define the ‘influence 
assortment’ of an influence network. Positive influence assortment 
means that players are predominately exposed to the voting intentions 
of members from their own party; negative influence assortment means 
that players are predominately exposed to members of the opposing 
party. To be precise, the influence assortment of player i is defined as

=





∆ ∆ ≥ /
− − ∆

a if 1 2
(1 ) otherwise (1)i

i i

i

in which ∆i denotes the proportion of the players who comprise the 
poll visible to player i who are assigned to the same party as player i. 
Notably, the influence assortment of a player depends in a nonlinear 
way on the proportion of their influencers who share their party. This 
definition is appropriate assuming players are strongly pulled towards 
the majority view that they observe (Supplementary Information sec-
tion 3). The overall assortment of the influence network, denoted A I, 
is the average influence assortment of its nodes.

Information gerrymandering arises when parties have asymmetric 
influence assortment. We quantify information gerrymandering as the 
difference in assortment between a party P and its opposition, by defin-
ing the influence gap as

∑ ∑
∩ ∩

=
| |

−
− | |∈ ∈

G
P PP H P H

a
N

a1 1
(2)I

i
i

i
i

c

in which P are the nodes assigned to party P, H are human nodes 
and N is the total number of nodes. Our model predicts that a party 
with a positive influence gap will benefit from information gerryman-
dering.

To test this prediction, we conducted experiments with human sub-
jects (n = 2,520) playing the voter game, in which we varied only the 
structure of the influence network (Fig. 3). All games involved two par-
ties of equal size (12 players each) with fixed payoffs (B = 2 and b = 0.5), 
super-majority threshold (V = 60%) and duration (240 seconds) (for 
full details of experiments and pre-registrations, see Supplementary 
Information sections 1–3). In the baseline condition, each player sees a 
poll that consists of three players from their own party and three players 
from the opposing party, but the influence network is otherwise drawn 
randomly. Under this condition of no influence assortment, each party 
achieved a winning consensus in roughly one-quarter of experimen-
tal replicates; deadlock occurred in the remaining half of replicates 
(Fig. 3a). The time-series data from this condition were used to infer the 
probabilistic voting parameters of our behavioural model by maximum 
likelihood (Supplementary Information section 2.2). The distribution 
of inferred strategies is consistent with a Nash equilibrium for the voter 
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Fig. 1 | Strategies and payoffs in the voter game. Players are assigned 
to either the purple or yellow party and allowed to change their voting 
intention over time in response to continuously updated polling 
information. a, The voting intentions recorded at the end of the game 
(after 240 s) determine the payoffs to players. Players are incentivized 
primarily to vote for their party (B > b), but also to coordinate with 
the larger group to avoid deadlock (b > 0; compromise worldview). 
b, Example time series of the overall vote share in three experiments, 
which illustrate the yellow party winning a consensus (final vote share 
exceeding V = 60%; top), neither party winning a consensus (deadlock; 

middle) and the purple party winning a consensus (bottom). c, A simple 
model of voter behaviour stipulates the probability a player will vote for 
their preferred party (yellow, in this example) at time t, given which of 
three possible outcomes is projected by the current polling information 
and whether the game is in the early (t < t*) or late (t > t*) phase. This 
six-parameter stochastic model of individual behaviour recapitulates the 
typical time series (Supplementary Fig. 4) and vote outcomes (Fig. 3) 
observed in experiments. b, c, Dashed lines indicate thresholds V = 60% 
and 1 − V = 40%.
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Stewart, Alexander J., et al. "Information gerrymandering and undemocratic decisions." Nature 573.7772 (2019): 117-121.



https://news.gallup.com/poll/220265/americans-favor-compromise-things-done-washington.aspx



Stewart, Alexander J., et al. "Information gerrymandering and undemocratic decisions." Nature 573.7772 (2019): 117-121.



Network influence 
assortment LETTER RESEARCH

game (Supplementary Information section 5), which includes a portion 
of players who behave as zealots.

We used our behavioural model to predict the quantitative effects of 
influence assortment and information gerrymandering on voting out-
comes in four other experimental conditions. All treatments retained 
the constraint that players have fixed and equal indegrees and outde-
grees, and thus the same amount of influence. Our model predicts that 
information gerrymandering will skew the final vote towards the party 
with a positive influence gap >G( 0)I  and that this party will achieve 
a winning consensus more often than its opposition. Both of these pre-
dictions were validated experimentally (one-sided Wilcoxon signed-
rank test, P = 0.003 and one-sided binomial test, P = 0.02; Fig. 3b), 
demonstrating that a party does indeed gain a considerable advantage 
by information gerrymandering.

If one party benefits from information gerrymandering then, under-
standing this, the opposing party will naturally seek to do the same. 
The party that has a disadvantage <G( 0)I  can redress the imbalance 
only by increasing the influence assortment of its members (equa-
tion (2)). But when both parties have equally high levels of influence 
assortment ( >A 0I  and =G 0I ), neither party will have an advantage. 
In fact, our model predicts that both parties will suffer from their 
self-constructed echo chambers, resulting in deadlock more often than 
in the case of no influence assortment. This prediction was also vali-
dated experimentally (one-sided t-test, t =  2.5, P = 0.006; Fig. 3), 
demonstrating that increasing the influence assortment of your party—
although a rational response to information gerrymandering by your 
opponent—decreases the rate of consensus and therefore decreases 
payoffs for both parties.

Information gerrymandering by differential influence assortment 
requires a degree of coordination among party members that may be 
impractical in some settings. Another way to achieve the same advantage 

is to encourage players to adopt a zero-sum worldview and act as zealots. 
Or, in online interactions, bots can be deployed in place of actual human 
zealots. In the context of the voter game, zealot bots always project the 
intention to vote for their party regardless of the polls. Placed in strategic 
locations, zealot bots can increase the influence assortment of their party 
and decrease the influence assortment of the opposing party, generating 
a positive influence gap. When one party’s zealot bots are so deployed 

>G( 0)I , our model predicts that the vote will be skewed in its favour 
and the party will win a consensus more often than its opposition. The 
first of these predictions was validated experimentally (one-sided 
Wilcoxon sign-rank test, P = 0.002; Fig. 3) and the second was not sta-
tistically significant (one-sided binomial test, P = 0.2; Fig. 3). Thus a 
party receives some advantage from information gerrymandering by 
zealot bots. However, if both parties seek to use bots in the same way, 
then overall influence assortment increases, neither party receives an 
advantage and deadlock occurs in all experimental replicates (Fig. 3e).

Collective decisions often involve more individuals, with greater 
heterogeneity in influence, than used in our experiments. To study 
information gerrymandering on complex networks, we simulated our 
experimentally derived behavioural model on large influence networks 
with long-tailed degree distributions (Supplementary Information sec-
tion 6). Information gerrymandering arises easily in these networks, 
and the influence gap GI continues to be predictive of the resulting vote 
skew (Fig. 4a). Information gerrymandering induces vote skews that 

0 1.00.5
0

0.4

0.8

Vote share (favoured team)

Fr
eq

ue
nc

y

0 1.00.5
0

0.4

0.8

Vote share (yellow team)

Fr
eq

ue
nc

y

0 1.00.5

0.4

0.8

Vote share (favoured team)

0

Fr
eq

ue
nc

y

B
B

BBB
B

B
B

B

BB
B

0 1.00.5

0.4

0.8

Vote share (yellow team)

0

Fr
eq

ue
nc

y

0 1.00.5

0.4

0.8

Vote share (yellow team)

0

Fr
eq

ue
nc

y

�! = 0.0, �! = 0.0 �! = 0.42, �! = 0.5

�! = 0.39, �! = 0.0�! = 0.5, �! = 0.52

�! = 0.76, �! = 0.0

a b

d

e

c

Experiment
Model

Fig. 3 | Undemocratic outcomes and polarization in the voter game.  
We conducted experimental voter games on human subjects (n = 2,560), 
varying only the structure of the influence network. Each game involved 
24 players, including any bots. a, We inferred the parameters of our 
behavioural model (Fig. 1c) from experiments in a baseline condition: 
networks with no influence assortment and no influence gap ( =A 0I  and 

=G 0I ). The model recapitulates the observed, bimodal distribution of 
voting outcomes. b–e, We used the model to predict the distribution of 
voting outcomes in 4 additional conditions each with ≥20 replicates 
(model predictions are shown in grey and experimental results are overlaid 
in light blue). b, Information gerrymandering = .G( 0 5)I  produced vote 
shares as large as 67% for the more assorted party, which received a mean 
vote share of 57% across experimental replicates, consistent with the model 
prediction (Table 1). c, Asymmetric placement of 6 zealot bots also 
favoured the party with a positive influence gap, resulting in vote shares as 
large as 63% and a mean vote share of 53%. d, Symmetric influence 
assortment gave neither party an advantage, and the frequency of a 
consensus (15%) was markedly reduced compared to networks without 
assortment (55%). e, Symmetrically placed bots gave neither party an 
advantage and resulted in deadlock for all replicates. Dashed lines indicate 
thresholds V = 60% and 1 − V = 40%. The party favoured by information 
gerrymandering is depicted as yellow in the example graphs, but was in 
fact assigned to yellow and purple evenly across experimental replicates.
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Fig. 2 | Influence assortment and information gerrymandering. 
a–d, The polling information available to a player in the voter game is 
determined by their placement on a directed graph, called the influence 
network. All of the example graphs here have nodes with identical 
indegree and outdegree equal to three; and background colours indicate 
the party with the majority of influence on each node (grey indicates no 
majority). Each individual may be influenced predominantly by their own 
party (positive influence assortment), predominately by the opposition 
party (negative influence assortment) or evenly split between parties (no 
influence assortment). a–c, When both parties have the same distribution 
of influence assortment across their members, assortment is symmetric 
and the decision outcome will be unbiased. d, An asymmetric distribution 
of assortment can distort the flow of information so that, even when 
all players have the same amount of influence, a majority of players are 
influenced primarily by one party’s members—a phenomenon that we call 
information gerrymandering.
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a positive influence gap. When one party’s zealot bots are so deployed 

>G( 0)I , our model predicts that the vote will be skewed in its favour 
and the party will win a consensus more often than its opposition. The 
first of these predictions was validated experimentally (one-sided 
Wilcoxon sign-rank test, P = 0.002; Fig. 3) and the second was not sta-
tistically significant (one-sided binomial test, P = 0.2; Fig. 3). Thus a 
party receives some advantage from information gerrymandering by 
zealot bots. However, if both parties seek to use bots in the same way, 
then overall influence assortment increases, neither party receives an 
advantage and deadlock occurs in all experimental replicates (Fig. 3e).

Collective decisions often involve more individuals, with greater 
heterogeneity in influence, than used in our experiments. To study 
information gerrymandering on complex networks, we simulated our 
experimentally derived behavioural model on large influence networks 
with long-tailed degree distributions (Supplementary Information sec-
tion 6). Information gerrymandering arises easily in these networks, 
and the influence gap GI continues to be predictive of the resulting vote 
skew (Fig. 4a). Information gerrymandering induces vote skews that 
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We conducted experimental voter games on human subjects (n = 2,560), 
varying only the structure of the influence network. Each game involved 
24 players, including any bots. a, We inferred the parameters of our 
behavioural model (Fig. 1c) from experiments in a baseline condition: 
networks with no influence assortment and no influence gap ( =A 0I  and 

=G 0I ). The model recapitulates the observed, bimodal distribution of 
voting outcomes. b–e, We used the model to predict the distribution of 
voting outcomes in 4 additional conditions each with ≥20 replicates 
(model predictions are shown in grey and experimental results are overlaid 
in light blue). b, Information gerrymandering = .G( 0 5)I  produced vote 
shares as large as 67% for the more assorted party, which received a mean 
vote share of 57% across experimental replicates, consistent with the model 
prediction (Table 1). c, Asymmetric placement of 6 zealot bots also 
favoured the party with a positive influence gap, resulting in vote shares as 
large as 63% and a mean vote share of 53%. d, Symmetric influence 
assortment gave neither party an advantage, and the frequency of a 
consensus (15%) was markedly reduced compared to networks without 
assortment (55%). e, Symmetrically placed bots gave neither party an 
advantage and resulted in deadlock for all replicates. Dashed lines indicate 
thresholds V = 60% and 1 − V = 40%. The party favoured by information 
gerrymandering is depicted as yellow in the example graphs, but was in 
fact assigned to yellow and purple evenly across experimental replicates.
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Fig. 2 | Influence assortment and information gerrymandering. 
a–d, The polling information available to a player in the voter game is 
determined by their placement on a directed graph, called the influence 
network. All of the example graphs here have nodes with identical 
indegree and outdegree equal to three; and background colours indicate 
the party with the majority of influence on each node (grey indicates no 
majority). Each individual may be influenced predominantly by their own 
party (positive influence assortment), predominately by the opposition 
party (negative influence assortment) or evenly split between parties (no 
influence assortment). a–c, When both parties have the same distribution 
of influence assortment across their members, assortment is symmetric 
and the decision outcome will be unbiased. d, An asymmetric distribution 
of assortment can distort the flow of information so that, even when 
all players have the same amount of influence, a majority of players are 
influenced primarily by one party’s members—a phenomenon that we call 
information gerrymandering.
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Examples
• Percolation on a network 

• Diffusion on a network (movement, etc.) 

• Regulatory relationships in cells (levels of gene activity, 
protein concentrations, etc.) 

• Ecological relationships (species populations) 

• Coupled oscillators (e.g. fireflies etc) 
• https://ncase.me/fireflies/ 
• PyCX example code

https://ncase.me/fireflies/
https://ncase.me/fireflies/


Dynamics of networks
• Things to consider 

• How do we add/remove nodes? 

• How do we add/remove edges? 

• Dynamics of networks can often be framed as 
dynamics on networks where we activate/inactivate 
nodes/edges in a super-network 

• E.g. sexual network partnerships



Dynamics of networks
• Often depends on the question at hand—often the 

rules for changing network structure are often question 
and system specific 

• Random graph generators from earlier can also be 
thought of as dynamics of networks 

• Erdös-Renyi 

• Small world 

• Preferential attachment



Dynamics of networks

• Dynamic empirical networks - contact networks, 
travel networks, ecological networks, trade 
networks, social media networks, etc.



12:00 2:00 4:00 6:00

8:00 10:00 12:00 14:00

16:00 18:00 20:00 22:00

Aiello AE, Simanek AM, Eisenberg MC, Walsh AR, Davis B, Volz E, Cheng C, Rainey JJ, Uzicanin A, Gao H, Osgood N. Design and methods of a social network isolation study for reducing 
respiratory infection transmission: The eX-FLU cluster randomized trial. Epidemics. 2016 Jun 1;15:38-55.



Examples
• Evolution of gene regulatory and metabolic networks 

• Self organization, adaptation of food webs 

• Social network formation and change, growth of 
collaboration and citation networks 

• Global economic relationships, trade, diplomacy, etc. 

• Growth of infrastructure networks (power grids, sanitation, 
traffic, railways, internet) 

• Many of these are potentially adaptive networks



Rail network Internet fiber cable network

https://en.wikipedia.org/wiki/
Rail_transportation_in_the_United_States

https://www.technologyreview.com/s/540721/first-detailed-public-
map-of-us-internet-backbone-could-make-it-stronger/



For next time…

• Reading 

• Sayama Chapter 16 

• Think Complexity Chapters 4 & 5


