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Basic reproduction number

• “Expected number of secondary cases arising from a typical primary 
case in an entirely susceptible population over their infectious 
period.”

𝑅! = 2 𝑅! = 3



Key aspects of the definition

1. Single infectious period in an otherwise susceptible population
• Technically defined only at the beginning of an outbreak
• But, 𝑅! is often used an abstract concept for an infectious disease’s epidemic 

potential

2. Expected number of new cases
• Any specific person will infect more or fewer

3. Over their infectious period
• There is an interplay between the infectious period, the pathogen’s 

infectiousness, and other aspects of its natural history



The “DOTS”

• The basic reproduction number can be thought of as the product of 
• D: duration
• O: opportunity
• T: transmission probability
• S: susceptibility

Kucharski, 2020



𝑅% in the classic SIR model

• In the classic SIR model, 𝑅! is the contact rate times the average 
duration of the infectious period

dS
dt
= −βIS

dI
dt
= βIS − γI

dR
dt
= γI Transmission rate

“OTS”

𝑅! =
"
#
× 𝛽

Average infectious period

“D”



Why is the reproduction number important?

• Threshold value for the local stability of the DFE (disease-free 
equilibrium)
• In plain language: if 𝑅! >1, an introduction becomes epidemic; if 𝑅! <1, it dies 

out

• Controls the dynamics of the outbreak
• Larger 𝑅! à short-lived but explosive outbreaks; reduce R0 to “flatten the 

curve”
• Larger 𝑅! à larger cumulative incidence, i.e., fraction of the population ever 

infected
• Larger 𝑅! à greater immunity needed for herd protection



Calculating 𝑅%
• 𝑅!, or more correctly, 𝑅eff, can be calculated from incidence data
• Not the topic of this lecture

• Mathematical models, which are abstract representations of the 
disease systems, are used to estimate 𝑅! as a function of disease-
related quantities
• Mathematical representations also allow us to generalize our 

conception of 𝑅! when transmission pathways other than person-to-
person are involved (e.g., vector, environmental)



The Next Generation Matrix and 
its geometry



The Next Generation Method

• Most common and rigorous approach to calculating 𝑅! from a 
mathematical model
• Developed by Heesterbeek, Diekmann, and colleagues (1990); 

popularized by Pauline van den Driessche (2002). See references at 
end of presentation.



The Next Generation Method, part 1 

• Define:
• Let 𝑥 be the vector of states and 𝑥! the DFE
• For each infected compartment 𝑖

• Let 𝑓! be the rate of influx of newly infected people to compartment 𝑖
• Let 𝑣! be the net transfer of individuals out of compartment 𝑖 by all other means

• Then %&!
%'
= 𝑓((𝑥) − 𝑣((𝑥)



SLIR model with demography

dS
dt
= µ − βIS − µS

d𝐿
dt
= βIS − σL − µL

dI
dt
= σL − γI − µI

dR
dt
= γI − µR

Susceptible Latent

InfectiousRecovered



SLIR model with demography

𝑓 𝑥 = βIS
0

v 𝑥 = σ + 𝜇 L
𝛾 + 𝜇 I − σL

dS
dt
= µ − βIS − µS

d𝐿
dt
= βIS − σL − µL

dI
dt
= σL − γI − µI

dR
dt
= γI − µR

in
fe

ct
ed new



The Next Generation Method, part 2

• Define:
• Let 𝐹 and 𝑉 be the Jacobians (matrix of 1st derivatives) of 𝑓 and 𝑣 evaluated 

at the disease-free equilibrium
• That is

• 𝐹"# = )$%!
$&" &'&#

• 𝑉"# = )$(!
$&" &'&#

e.g., 𝐹 =
$%$
$)

$%$
$*

$%%
$)

$%%
$* &)&"



SLIR model with demography

𝑓 𝑥 = βIS
0

v 𝑥 = σ + 𝜇 L
𝛾 + 𝜇 I − σL

dS
dt
= µ − βIS − µS

d𝐿
dt
= βIS − σL − µL

dI
dt
= σL − γI − µI

dR
dt
= γI − µR

in
fe

ct
ed new

F = 0 β
0 0

V = σ + 𝜇 0
−σ 𝛾 + 𝜇

𝑥! = (1,0,0,0)



The Next Generation Method, part 3

• The matrix F𝑉*+ is called the next generation matrix

• The basic reproduction number is the spectral radius (largest 
eigenvalue) of the next generation matrix. 



The Next Generation Method, part 3

• The matrix F𝑉*+ is called the next generation matrix

• The basic reproduction number is the spectral radius (largest 
eigenvalue) of the next generation matrix. 

Sorry, what? Why?



Understanding the Next Generation Method

• The matrix 𝑉*+ is a matrix of residence times.
• Imagine a newly infected individual entering compartment k:

The (j, k) entry of 𝑉!" is the average length of time this individual spends in compartment j during 
its lifetime, assuming that the population remains near the DFE and barring reinfection. 

-van den Driessche & Watmough, 2002



Understanding the Next Generation Method

• The matrix 𝑉*+ is a matrix of residence times.
• Imagine a newly infected individual entering compartment k:

The (j, k) entry of 𝑉!" is the average length of time this individual spends in compartment j during 
its lifetime, assuming that the population remains near the DFE and barring reinfection. 

-van den Driessche & Watmough, 2002

𝑉*+ =

1
𝜎 + 𝜇

0

𝜎
𝜎 + 𝜇 𝛾 + 𝜇

1
𝛾 + 𝜇

Starting in I, you 
never go to L.

Starting in I, you 
recover or die.

Starting in L, you 
leave when you 
recover or die.

Starting in L, you go 
on to I, unless you 
die first.



Understanding the Next Generation Method

• The matrix F is a matrix of rate of new infections.
The (𝑖,𝑗) entry of 𝐹 is the rate at which infected individuals in compartment 𝑗 produce a new infection 
in compartment 𝑖.
-van den Driessche & Watmough, 2002



Understanding the Next Generation Method

• The matrix F is a matrix of rate of new infections.
The (𝑖,𝑗) entry of 𝐹 is the rate at which infected individuals in compartment 𝑗 produce a new infection 
in compartment 𝑖.
-van den Driessche & Watmough, 2002

𝐹 = 0 𝛽
0 0

Only people in compartment I make 
new infected people, and those new 
infected people all start in L.

Latent people are 
not (yet) infectious.



Understanding the Next Generation Method

• The matrix F𝑉*+ is called the next generation matrix
Hence, the (i, k) entry of the product F𝑉!" is the expected number of new infections in 
compartment i produced by the infected individual originally introduced into compartment k.

-van den Driessche & Watmough, 2002



Understanding the Next Generation Method

• The matrix F𝑉*+ is called the next generation matrix
Hence, the (i, k) entry of the product F𝑉!" is the expected number of new infections in 
compartment i produced by the infected individual originally introduced into compartment k.

-van den Driessche & Watmough, 2002

𝐹𝑉*+ =
𝛽𝜎

𝜎 + 𝜇 𝛾 + 𝜇
𝛽

𝛾 + 𝜇
0 0

Infected people 
make new exposed, 
not new infectious.



Understanding the Next Generation Method

• Okay, we can interpret the entries of the next generation matrix, but 
why the spectral radius?



Geometry of the NGM

• Near the disease-free equilibrium, the process of making the next 
generation is approximately linear.

• We can use the geometry of linear systems!

𝐿+
𝐼+

= 𝐹𝑉*+ 𝐿!
𝐼!

𝑦 = 𝐴𝑥
Previous generationNext generation

Next generation operator

Linear system



Geometry of the NGM

• Consider the unit circle in the 1-norm
{𝑥: 𝑥 = 1}

• The 1-norm is natural choice because 
we are  partitioning a fixed population 
into different compartments



Geometry of the NGM

• Apply a linear transformation to a circle

A = 1.58 0.84
0.14 1.72

{𝐴𝑥: 𝑥 = 1}

The size of the next generation depends 
on the partition of the previous 
generation.

Largest possible 
next generation

Eigenvector 
corresponding to 
largest eigenvalue

𝐴 =2.56

ρ 𝐴 =2



Geometry of the NGM

• After multiple generations, 𝐴,𝑥, the 
shape gets larger and becomes 
exaggerated. This tells us about long 
term behavior.

• But, we don’t care about long-term, 
linear  behavior, per se, which will 
quickly deviate from the true non-
linear behavior. We want average
behavior.



Geometry of the NGM

• Scale our shape so that we get 
average generation size, # |𝐴,𝑥|

• As 𝑛 increases, we see # 𝐴,
converging to 𝜌 𝐴 .
• The size of the average next 

generation will be 𝜌 𝐴 because 
(almost every) initial condition 
converges  to lie along the 
dominant eigenvector.



Geometry of the NGM

• The eigenvector corresponding to the largest eigenvalue of A also has 
a useful interpretation. It is the stable distribution of the infectious 
compartments.

• Note that this stable distribution is unlikely to manifest in reality 
because an epidemic quickly leaves the vicinity of the DFE where this 
analysis is valid.

𝜌 𝐴 ν = 𝐴ν

2 2/3
1/3 = 1.58 0.84

0.14 1.72
2/3
1/3



Additional examples

B = 1.30 1.20
0.15 1.00 C = 0.80 1.60

0.00 0.40
Eigenvalues: 1.6, 0.7 Eigenvalues: 0.8, 0.4



Developing symbolic 
interpretations of the NGM



Interpreting the NGM

• We now have a better understanding why the spectral radius is the 
right measure.

• But we still may struggle with interpreting the NGM matrix in terms of 
our parameters, especially in higher dimensional cases.



Example: Treatment compliance

• Infected individuals can go on and off a treatment that reduces their 
infectivity and mortality rate

�̇� = −S 𝛽-𝐼 + 𝛽.𝑇
̇𝐼 = S 𝛽-𝐼 + 𝛽.𝑇 − 𝜑 + 𝛿- 𝐼 + 𝜃𝑇
�̇� = φI − 𝜃 + 𝛿. 𝑇

Susceptible Infected Treatment

Infection 𝛽#𝐼 + 𝛽$𝑇

Lapse 𝜃

Start 
treatment 𝜑Death 𝛿# Death 𝛿$



Example: Treatment compliance

𝑓 𝑥 = S 𝛽-𝐼 + 𝛽.𝑇
0

v 𝑥 = 𝜑 + 𝛿- 𝐼 − 𝜃𝑇
𝜃 + 𝛿. 𝑇 − 𝜑I

F = 𝛽- 𝛽.
0 0

V = 𝜑 + 𝛿- −𝜃
−𝜑 𝜃 + 𝛿.

𝑉*+ =

𝜃 + 𝛿.
𝜑 + 𝛿- 𝜃 + 𝛿. − 𝜑𝜃

𝜃
𝜑 + 𝛿- 𝜃 + 𝛿. − 𝜑𝜃

𝜑
𝜑 + 𝛿- 𝜃 + 𝛿. − 𝜑𝜃

𝜑 + 𝛿-
𝜑 + 𝛿- 𝜃 + 𝛿. − 𝜑𝜃



Example: Treatment compliance

𝑓 𝑥 = S 𝛽-𝐼 + 𝛽.𝑇
0

v 𝑥 = 𝜑 + 𝛿- 𝐼 − 𝜃𝑇
𝜃 + 𝛿. 𝑇 − 𝜑I

F = 𝛽- 𝛽.
0 0

V = 𝜑 + 𝛿- −𝜃
−𝜑 𝜃 + 𝛿.

𝑉*+ =

𝜃 + 𝛿.
𝜑 + 𝛿- 𝜃 + 𝛿. − 𝜑𝜃

𝜃
𝜑 + 𝛿- 𝜃 + 𝛿. − 𝜑𝜃

𝜑
𝜑 + 𝛿- 𝜃 + 𝛿. − 𝜑𝜃

𝜑 + 𝛿-
𝜑 + 𝛿- 𝜃 + 𝛿. − 𝜑𝜃

What? These are average times spent in the compartments? How do we interpret 𝜑 + 𝛿# 𝜃 + 𝛿$ − 𝜑𝜃?



Expected number of visits

• How many times, on average, will one not be on treatment? To 
answer this, first ask, what is the probability that one relapses once 
they start treatment.

• The probability of jumping to treatment and back is /0
/12$ 012%

.

Infected Treatment

Probability of 
transition

𝜑
𝜑 + 𝛿#

Probability of 
transition

𝜃
𝜃 + 𝛿$



Expected number of visits

• Let us count the number of visits times the probability of making the 
visit. This will give us the expected number.

• First define 𝑥 ≔ /0
/12$ 012%

1

Start in the I compartment



Expected number of visits

• Let us count the number of visits times the probability of making the 
visit. This will give us the expected number.

• First define 𝑥 ≔ /0
/12$ 012%

1 + 𝑥

Start in the I compartment

Make a return visit



Expected number of visits

• Let us count the number of visits times the probability of making the 
visit. This will give us the expected number.

• First define 𝑥 ≔ /0
/12$ 012%

1 + 𝑥 + 𝑥;

Start in the I compartment

Make a return visit

Come back twice



Expected number of visits

• Let us count the number of visits times the probability of making the 
visit. This will give us the expected number.

• First define 𝑥 ≔ /0
/12$ 012%

1 + 𝑥 + 𝑥; + 𝑥< +⋯ =
1

1 − 𝑥

Start in the I compartment

Make a return visit

Come back twice



Aside

• Is it reasonable that probability of relapse is the same every time one 
goes on treatment?
• Well, whether it is or not, it’s tacitly baked into the model 

assumptions.
• As always, it’s very important to understand the tacit assumptions of 

your model.



Expected number of visits

• By our formula, the expected number of visits to I is
1

1 − 𝑥
=

1

1 − 𝜑𝜃
𝜑 + 𝛿* 𝜃 + 𝛿=

=
𝜑 + 𝛿* 𝜃 + 𝛿=

𝜑 + 𝛿* 𝜃 + 𝛿= − 𝜑𝜃

• Each visit to I lasts, on average, +
/12$

.

• So, one expects to spend 
𝜑 + 𝛿- 𝜃 + 𝛿.

𝜑 + 𝛿- 𝜃 + 𝛿. − 𝜑𝜃
×

1
𝜑 + 𝛿-

=
𝜃 + 𝛿=

𝜑 + 𝛿* 𝜃 + 𝛿= − 𝜑𝜃
much time in the compartment over one’s infectious lifetime. 
• This is 𝑉*++,+. Other entries can be derived similarly.



Graph-theoretic interpretation

• Write the adjacency matrix 𝐴 of the weighted, directed graph of the 
infected compartments such that 𝐴4,, is the probability of moving 
from compartment 𝑛 to compartment 𝑚

Infected Treatment

Probability of 
transition

𝜑
𝜑 + 𝛿#

Probability of 
transition

𝜃
𝜃 + 𝛿$

A =
0

𝜃
𝜃 + 𝛿"

𝜑
𝜑 + 𝛿#

0



Graph-theoretic interpretation

• Then
𝑀 = 𝐼 + 𝐴 + 𝐴< + 𝐴= +⋯ = 𝐼 − 𝐴 *+

is the matrix who 𝑖, 𝑗 entry is the expected number of visits to 
compartment 𝑖 if you start in compartment 𝑗.

• So, we can write 𝑉*+ as the product of waiting times and this matrix 
of expected visits



Graph-theoretic interpretation

𝑉>? =

1
𝜑 + 𝛿*

0

0
1

𝜃 + 𝛿=

× 1 0
0 1 −

0
𝜃

𝜃 + 𝛿=
𝜑

𝜑 + 𝛿*
0

>?

Average time 
spent in a visit to I

Average time spent in a 
visit to T

Probability of going T to I

Probability of going I to T

Waiting times matrix Expected visits matrix



Exercises

• Environmental 
transmission
• Vectorborne

transmission
• Between- and within-

subgroup transmission



Take-aways and suggestions

• A geometric interpretation of the next generation matrix helps 
explain why the basic reproduction is the spectral radius
• Stepping through interpretations for the entries of F, 𝑉*+, and F𝑉*+

can help make understanding 𝑅! easier
• 𝑅! depends on what we decide counts as a new infection. This is an 

epidemiological not mathematical decision.
• Calculating and interpreting 𝑅! for simpler models than your target 

model can build intuition
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