
Exercise 1. Environmentally transmitted disease. When modeling many diseases, we often con-

sider direct, person-to-person transmission, captured by the familiar β term. However, with the

exception of sexually-transmitted infections, pathogen transmission is actually mediated by the en-

vironment and may be affected by environmental processes. For many diseases, the environmental

dynamics are fast enough that the direct transmission approximation works well. However, when

pathogens are persistent in the environment, the direct transmission approximation may no longer

be valid, and we may want to explicitly model the concentration of pathogens in the environment.

Consider an infectious disease system with the familiar S, I, and R compartments. We addition-

ally track the concentration of pathogens in the water system W . In this model, people become

infectious not through contact with one another but by drinking the water. People drink ρ volume

of water κ times a day and each pathogen has a probability π of causing infection. Some models

parameterize βW = κρπ, although this βW is subtly different from the β of the SIR model: while

the β of the SIR model is often parameterized from the perspective of the infectious person (i.e.,

how fast are infectious people transmitting to susceptible people), βW is from the perspective of the

susceptible person (i.e., how fast are susceptible people getting infected from the water). Finally,

infectious people shed pathogens into the water at rate α, and pathogens die-off in the environment

at rate ξ. This type of model is sometimes called an SIWR model (Figure 1a).

Ṡ = −κρπWS,

İ = κρπWS − γI,

Ẇ = αI − ξW,

Ṙ = γI.

(1)

Derive and interpret R0 for this SIWR model (assuming I and W are the infected classes and that we

only count new infections in the I compartment).
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Figure 1
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Exercise 2. Vectorborne disease. Another class of models that do not use direct transmission are

vectorborne disease models. One important classes of vectorborne diseases are arboviruses, which

include dengue, chikungunya, yellow fever, and many others. Malaria is caused by a parasite spread

by mosquitoes, and Lyme disease is caused by a bacteria spread by ticks. In vectorborne disease

models, we have two or more classes of hosts that can each be susceptible, infectious, or recovered

(although modeling recovered vectors is often not needed). Each class of host only transmits the

disease to the other class and not directly to other members of their own class (e.g., mosquitoes

infect humans but not other mosquitoes).

Here, we use a very simple model with two classes of individuals (1 and 2), each of which can be

S, I, or R. Infectious members of each class transmit only to the other class with rates β12 and β21

(Figure 1b).

Ṡ1 = −β21S1I2/N1,

İ1 = β21S1I2/N1 − γ1I1,

Ṙ1 = γI1,

Ṡ2 = −β12S2I1/N2,

İ2 = β12S2I1/N2 − γ2I2,

Ṙ2 = γI2.

(2)

At this point, we face an important decision: do new infections in each class of individuals count

as new infections? The answer depends on your interpretation of the model. If class 1 represents

humans and class 2 represents mosquitoes, we probably only care about new infections in humans.

But, if you were using this model to represent, say, a sexually transmitted disease in a fully hetero-

sexual population of men and women, we would care about new infections in both classes. (This

model is, of course, not a realistic representation of any actual population, as it ignores the spectra

of sexuality and gender, which is problematic both from a representation standpoint and because

of the possibility of missing important dynamic implications. Nevertheless, it illustrates the point

that we might have bipartite-like transmission where we count cases in both classes equally.)

Derive and interpret R0 for this model (assuming I1 and I2 are the infected classes) when i) we care

about new infections in only one of the infectious classes and when ii) we care about new infections in

both. (Your f and v vectors will be different). How do the forms of R0 relate to each other?
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Exercise 3. Between- and within-subgroup transmission. It is often of interest to split the

population into subgroups by age, risk-status, location, or other relevant characteristic. Unlike in

the previous model, transmission can occur both within-group and between-groups (Figure 1c):

Ṡ1 = −β11S1I1/N1 − β21S1I2/N1,

İ1 = β11S1I1/N1 + β21S1I2/N1 − γ1I1,

Ṙ1 = γI1,

Ṡ2 = −β12S2I1/N2 − β22S2I2/N2,

İ2 = β12S2I1/N2 + β22S2I2/N2 − γ2I2,

Ṙ2 = γI2.

(3)

Derive and interpret R0 for this model. You should find that it is the solution to a quadratic equation.

How do within-group and between-group transmission each contribute? How do the R0 for this model

compare to that of the previous model (β11, β22 → 0)? It is often useful to write a multigroup R0 in

terms of subgroup R0s, i.e., the R0 one would get modeling that subgroup alone, e.g., R0,1 = β11/γ1.

What does that reparameterization look like here? Does the reparmeterization give any additional

insight? What happens to R0 as β12, β21 → 0?
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