Sensitivity Analysis &
Sampling

Epid 814



Sensitivity analysis

* Uncertainty quantification: examines the variation in
model outputs & behaviors

* Sensitivity analysis: examines which inputs/
parameters drive that variation

* |t you change parameter p1, how much change
iNn our output y (or other quantity of interest) do
yOou see”?



Goals

« Capture the frequency/distribution of different
outputs/behaviors observed across parameter
space as a function of the parameters

e Search for extremes/oddities, i.e. potentially
uncommon behaviors that match a criteria (e.g.

costly, interesting), illustrate the extreme range of
behaviors



Goals

* Find sensitive/insensitive parameters or parameter
combinations

* Use these to decide what parameters to adjust/
tune/intervene on

 Reduce model complexity by fixing insensitive
parameters



Basic setup

* Adjust a parameter or multiple parameters of
iInterest

« Evaluate the model behavior/output

e Look for trends in how output changes as a
function of parameters



Sensitivity is inherently a
local attribute
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Sensitivity/robustness/
identifiability tradeoft

e Sensitivity - how much the model output changes
as a function of the parameter(s)

* Robustness - Is the model able to reproduce similar
behavior across a range of parameter space?



Sensitivity/robustness/
identifiability tradeoft

 When a behavior Is robust, we may have more
confidence in it—but, this means we cannot be
sure of what parameters generated the behavior

e Unidentitiability

o Similarly, when the output is highly sensitive, we
may be better able to infer what parameter
conditions must be
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| ocal Methods

 One-at-a-time approaches

e Derivative methods for local sensitivity



One-at-a-time approach

* Adjust one parameter at a time, fixing the rest to
pore-specified values

 Example: voting model initial fraction yes/no
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Derivative-based
local sensitivity
Model )'c=f(x,t,p)
Output y = g(x,,p)

Output sensitivity to parameter variations

dy / dp

Meaning depends on magnitude of y and p—often
more useful to look at relative sensitivity

dyly dyp
dp/p dpy




How to calculate local
sensitivity”?

Many methods—practically speaking, often done
simply by testing small perturbations (e.g. 5%
change) of the parameters and seeing how the
output changes

Relative sensitivity:
dy/y Ay/y % changeiny
dp/p Ap/p % change inp




Forward sensitivity
equations for ODEs

 Extended ODE system that allows simulation of the
model and the sensitivity functions at the same time

dx

E g(t,X(t,@),@)
d Ox 0g Ox = Og
dt 06 Ox 00 00’

» Take your ODE system and apply 0/08 (with chain
rule and assuming you can switch derivative order)



SIR model
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» We assume the initial conditions (5(0), /(0), R(0)) and the
population size N are known.

» The vector of model parameters is 8 = (5, ).

» The basic reproductive number is Rg = /7. Whenever
3/~ > 1 then an outbreak occurs.

Borrowed from Ariel Cintron-Arias NIMBIioS 2014 Parameter Estimation Tutorial



http://www.nimbios.org/wordpress-training/parameter/wp-content/uploads/sites/14/2014/03/ols_sir_lecture.pdf
http://www.nimbios.org/wordpress-training/parameter/wp-content/uploads/sites/14/2014/03/ols_sir_lecture.pdf
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Sensitivity functions

Traditional Sensitivity Functions Relative Sensitivity Functions
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Sensitivity Analysis

e Sensitivity is inherently a local attribute

e But often we want to know about global sensitivity
over a wide range of values of 6

* Helps to know where to allocate resources in
general for a variety of scenarios



Global Methods

e Sampling-based methods

* Visual approaches! (sample and look at
scatterplots, etc.)

* Regression-based methods

e \Varlance-based methods



Sensitivity analysis:
sampling & visualization

e Sample parameter space, then plot relationships
between parameters and model output(s)

 Example: SIR model on the karate club network
with tie breaking and regrowth
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How to sample”

* (Global sensitivity relies on sampling a sometimes
high-dimensional parameter space



Sampling parameter space

* Grid sampling

* Typically choose uniform
distribution of points

* (Good coverage of space

Gridsamplel[, 2]

 Computationally
expensive! Becomes
infeasible as dimension Srteanpll. |
INncreases



Sampling parameter space

* Random sampling

e Often done with uniform
distribution, but can
choose any distribution

Randsample[, 2]

* However, may leave big

blank spots, require

many samples to fully ok ok i
explore the space



Sampling parameter space

* More efficient ways to
explore the space?

e Latin hypercube
sampling (& variants,
orthogonal, etc.)

Randsample[, 2]

* Sobol sampling (&
other low-discrepancy o e ok o
seguences)



|_atin hypercube sampling

e Kind of like sudoku

* Divide space into a grid of rows &

columns Il :

 Choose one sqguare in each row and

each column X

[11 A

 Choose a random point within that X

square e =




|_atin hypercube sampling

e Still an element of
randomness

* Ensures better coverage
of the space/faster
convergence to the
sampled distribution

LHsamplel, 2]

0.50
LHsample[, 1]



Sobol sampling

e Low-discrepancy
sequence (see also

Halton, Faure) : . .

» Generates a sequence I ‘ T
that samples the space ¢ I :
evenly but requires few "o —— :
points ' :

Sobolsample[, 1]

e Convergence can be
better than LHS

Kucherenko et al., Exploring multi-dimensional spaces: a Comparison of Latin Hypercube and Quasi Monte Carlo Sampling Technigues.
https://arxiv.org/abs/1505.02350



How many samples to take”

* Jough to say! Balance computational intensiveness
with good coverage (often >>100, e.g. in the 1K to
10K range depending on number of parameters)

 May need to run more than one sample for a given
point due to stochasticity (since different runs may
give different behaviors)

 Some methods have rules of thumb, e.g. for LHS,
Ns > (4/3) x Np has been proposed, but you will
often want much more than this bound

Blower and Dowlatabadi (1994), McKay et al. (1979)



Regression based methods

e it [inear trend to the data

e Pearson correlation coefficient - correlate
parameter and output

 However, only works for linear relationships

* For nonlinear but monotonic relationships, rank-
based correlation coetfticients are often usetul
(draw example)



Partial rank correlation
coefficient

e A rank correlation coefficient that accounts for the
effects of the other parameters

* Requires monotonic relationship with the output

PRCC =-0.72715
p-value = 3.1128e-165
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Variance-pased methods

 Decomposition of variance (also called the Sobol
method)

* Determines how much of the variance in output is
due to each parameter

* Analogous to an ANOVA
* Direct calculation

e Faster options, e.g. eFAST



Word of caution: interpreting
statistical results on model outputs

* What does the p-value on one of these regression
or variance-based statistics mean?

 What is the source of the uncertainty in these
estimates”



Dimension reduction &
parameter selection

* FIXIng Insensitive parameters
e Parameter subset selection methods

* Find subsets of parameters or potentially new
parameter combinations that explain most of the
behavior (by fixing parameters or parameter
combinations that are insensitive)



Surrogate models

* (Global sensitivity methods can be highly
computationally expensive—many ABMs take too
long to run to be teasible with the number of
samples needed to explore space

e Surrogate models (also called emulators, response
surfaces) provide another option



Surrogate models

* |dea is to fit a surface or function to the model
output(s) as a function of the parameters

 Choose a functional form that is cheap to
evaluate many times (e.g. polynomial, linear)
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Cook JA, Smith RC, Hite JM, Stefanescu R, Mattingly J. Application and Evaluation of Surrogate Models for Radiation Source Search. Algorithms. 2019 Dec;12(12):269.



Surrogate models

Use a smaller number of points to fit the surface,
then sample a large number of points to run
sensitivity analysis

Re-run using the true model on regions of interest



Next time - Journal Club

 Marino, Simeone, et al. "A methodology for
performing global uncertainty and sensitivity
analysis in systems biology." Journal of theoretical
biology 254.1 (2008): 178-196.




