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But first, a quick intro to parameter estimation



Parameter Estimation

• Basic idea: parameters that  
give model behavior that  
more closely matches data  
are ‘best’ or ‘most likely’ 

• Frame this from a statistical  
perspective (inference, regression) 

• Can determine ‘most likely’ parameters or 
distribution, confidence intervals, etc.
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Parameter Estimation

• In general—search parameter space to find optimal fit 
to data 

• Or to characterize distribution of parameters that 
matches data

Yay! Multiple Mins Struct. UnID



How to frame this statistically?

• Maximum Likelihood Approach 

• Idea: rewrite the ODE model as a statistical model, 
where we suppose we know the general form of the 
density function but not the parameter values 

• Then if we knew the parameters we could calculate 
probability of a particular observation/data:

P z | p( )

data parameters



Maximum Likelihood

• Likelihood Function   

• Re-think the distribution as a function of the data 
instead of the parameters 

• E.g.  

• Find the value of p that maximizes L(p|z) - this is the 
maximum likelihood estimate (MLE) (most likely given 
the data)

P z | p( ) = f z, p( ) = L p | z( )

f z | µ,σ 2( ) = 1
2πσ

exp −
z − µ( )2
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Likelihood Function

Data value

Pr
ob

ab
ilit

y 
de

ns
ity

PDF given a  
parameter value



Likelihood Function

Data value

Para
mete

r v
alu

e
PDF given a  
parameter value

Pr
ob

ab
ilit

y 
de

ns
ity



Likelihood Function

Data value

Pr
ob

ab
ilit

y 
de

ns
ity

Para
mete

r v
alu

e
Move the parameter and  
the distribution shifts



Likelihood Function

Data value

Pa
ra

m
et

er
 v

alu
e



Likelihood Function

Data value

Pa
ra

m
et

er
 v

alu
e



Likelihood Function

Data value

Pa
ra

m
et

er
 v

alu
e

PDF given a  
parameter value



Likelihood Function

Data value

Pa
ra

m
et

er
 v

alu
e Likelihood function 

given data



Maximum Likelihood

• Consistency - with sufficiently large number of 
observations n, it is possible to find the value of p with 
arbitrary precision (i.e. converges in probability to p) 

• Normality - as the sample size increases, the distribution 
of the MLE tends to a Gaussian distribution with mean 
and covariance matrix equal to the inverse of the Fisher 
information matrix 

• Efficiency - achieves CR bound as sample size⟶∞ (no 
consistent estimator has lower asymptotic mean squared 
error than MLE)



Example - ODE Model with Gaussian Error

• Model: 

• Suppose data is taken at times 

• Data at ti =  

• Suppose error is gaussian and unbiased, with known 
variance      (can also be considered an unknown 
parameter)

 

!x = f x,t, p( )
y = g(x,t, p)

zi = y ti( ) + ei

t1,t2 ,…,tn

σ 2



Example - ODE Model with Gaussian Error

• The measured data     at time i can be viewed as a 
sample from a Gaussian distribution with mean  
y(x, ti,p) and variance  

• Suppose all measurements are independent (is this 
realistic?)
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Example - ODE Model with Gaussian Error

• Then the likelihood function can be calculated as:

f zi | µ,σ
2( ) = 1

2πσ
exp −

zi − µ( )2

2σ 2
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Example - ODE Model with Gaussian Error

• Then the likelihood function can be calculated as:

f zi | µ,σ
2( ) = 1

2πσ
exp −

zi − µ( )2

2σ 2
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)Gaussian PDF:

f zi | y x,ti , p( ),σ 2( ) = 1
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Example - ODE Model with Gaussian Error

• Then the likelihood function can be calculated as:

f zi | µ,σ
2( ) = 1

2πσ
exp −

zi − µ( )2
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)Gaussian PDF:
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Formatted for 
model:

Likelihood function assuming independent observations:

L y ti , p( ),σ 2 | z1,…, zn( ) = f z1,…, zn | y ti , p( ),σ 2( )
= f zi | y ti , p( ),σ 2( )

i=1

n
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Example - ODE Model with Gaussian Error

L y ti , p( ),σ 2 | z1,…, zn( ) = 1
2πσ 2
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Example - ODE Model with Gaussian Error

−LL = − ln 1
2πσ 2
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• It is often more convenient to minimize the Negative 
Log Likelihood (-LL) instead of maximizing the 
Likelihood 

• Log is well behaved, minimization algorithms 
common



Example - ODE Model with Gaussian Error

−LL = n
2
ln 2π( ) + n ln σ( ) +

zi − y ti , p( )( )2
i=1

n

∑
2σ 2

If    is known, then first two terms are constants & will not be 
changed as p is varied—so we can minimize only the 3rd term 

and get the same answer

min p −LL( ) = min p
zi − y ti , p( )( )2
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Example - ODE Model with Gaussian Error

• Similarly for denominator: 

• This is just least squares!  

• So, least squares is equivalent to the ML estimator 
when we assume a constant known variance

min p −LL( ) = min p
zi − y ti , p( )( )2
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Maximum Likelihood Summary for ODEs

• Can calculate other ML estimators for different 
distributions 

• Not always least squares-ish! (mostly not) 

• Although surprisingly, least squares does fairly 
decently a lot of the time



Example - Poisson ML

• For count data (e.g. incidence data), the Poisson 
distribution is often more realistic than Gaussian 

• Likelihood function?



Example - Poisson ML

• Model: 

• Data     is assumed to be Poisson with mean  

• Assume all data points are independent 

• Poisson PMF: 

 

!x = f x,t, p( )
y = g(x,t, p)

y ti( )zi

f zi | y ti( )( ) = y ti( )zi e− y ti( )

zi !



Poisson ML

• Negative log likelihood:  
 
 
 
 
 
 
 
 

• Last term is constant

−LL = − ln
y ti( )zi e− y ti( )

zi !i=1

n
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Example - Poisson ML

• Poisson ML Estimator: 

• Other common distributions - negative binomial 
(overdispersion), zero-inflated poisson or negative 
binomial, etc.

min p −LL( ) = min p − zi ln y ti( )( ) + y ti( )
i=1

n

∑
i=1

n

∑
#
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Maximum Likelihood Summary for ODEs

• Basic approach - suppose only measurement error 

• Data is given by distribution where model output is 
the mean 

• Suppose each time point of data is independent 

• Use PDF/PMF to calculate the likelihood 

• Take the negative log likelihood, minimize this over 
the parameter space



Maximum Likelihood for other kinds of models

• Can be quite different! 

• May require more computation to evaluate (e.g. 
stochastic models) 

• May also be structured quite differently! (e.g. network or 
individual-based models)



Tiny Network Example

• Data: infection pattern on the network 

• Model: suppose constant probability p of infecting along 
an edge from someone who got sick before you 

• What’s the likelihood?



Tiny Network Example

• Data: infection pattern on the network 

• Model: suppose constant probability p of infecting along 
an edge, assuming we start with first case 

• What’s the likelihood? 

• Can calculate contributions from  
each node (for example) 

• L(p,data) might be something like: P(susc nodes did not 
get sick) x P(infected nodes did get sick)



Very (very!) brief intro to  
Bayesian Approaches to Parameter Estimation

• Allows one to account for prior information about the 
parameters 

• E.g. previous studies in a similar population 

• Update parameter information based on new data 

• Recall Bayes’ Theorem:

P p | z( ) = P params | data( ) = P z | p( ) ⋅P p( )
P z( )



Very (very!) brief intro to  
Bayesian Approaches to Parameter Estimation

• Allows one to account for prior information about the 
parameters 

• E.g. previous studies in a similar population 

• Update parameter information based on new data 

• Recall Bayes’ Theorem:

P p | z( ) = P params | data( ) = P z | p( ) ⋅P p( )
P z( )

Likelihood
Prior 

distribution

Normalizing constant 
(can be difficult to calculate!)



Bayesian Parameter Estimation

• From prior distribution & likelihood distribution, determine 
the posterior distribution of the parameter 

• Can repeat this process as new data is available



Bayesian Parameter Estimation

• Treats the parameters inherently as distributions (belief) 

• Philosophical battle between Bayesian & frequentist 
perspectives 

• Word of caution on choosing your priors 

• Denominator issues - MAP Approach



from XKCD:
http://xkcd.com/1132/

http://xkcd.com/1132/


Identifiability



Parameter Estimation

• In general—search parameter space to find optimal fit 
to data 

• Or to characterize distribution of parameters that 
matches data

Yay! Multiple Mins Struct. UnID



Identifiability

• Identifiability—Is it possible to uniquely determine the 
parameters from the data? 

• Important problem in parameter estimation 

• Many different approaches - statistics, applied math, 
engineering/systems theory

Ollivier 1990, Ljung & Glad 1994,  Evans & Chappell 2000, Audoly et al 2003, Hengl et al. 2007, Chis et al 2011
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Identifiability

• Practical vs. Structural  

• Broad, sometimes overlapping categories 

• Noisy vs. perfect data  

• Example:  y = (m1 + m2)x + b  

• Unidentifiability - can cause  
serious problems when  
estimating parameters 

• Identifiable combinations

m1+m2
b

x

y







Structural Identifiability

• Assumes best case scenario - data is known 
perfectly at all times 

• Unrealistic! 

• But, necessary condition for practical identifiability 
with real, noisy data



Structural Identifiability

• Reveals identifiable combinations and how to 
restructure the model so that it is identifiable 

• Can give a priori information, help direct experiment 
design



Categories to consider

• Structural vs. practical identifiability 

• Analytical vs. numerical methods 

• Global vs. local results (in parameter space)



Key Concepts

• Identifiability vs. unidentifiability 

• Practical vs. structural, local vs. global 

• When does unidentifiability matter? 

• Identifiable Combinations 

• Reparameterization 

• Related questions: observability, distinguishability & 
model selection



Reparameterization

• Identifiable combinations - parameter combinations 
that can be estimated 

• Once you know those, why reparameterize? 

• Estimation issues - reparameterization provides a 
model that is input-output equivalent to the original 
but identifiable 

• Often the reparameterized model has ‘sensible’ 
biological meaning (e.g. nondimensionalized, in terms 
of R0, etc.)



Methods we’ll talk about today

• Differential Algebra Approach - structural identifiability, 
global, analytical method 

• Fisher information matrix - structural or practical, 
local, analytical or numerical method 

• Profile likelihood - structural or practical, local, 
numerical method



Simple Methods

• If you have a small system, you can even plot the 
likelihood surface (typically can’t though—more on 
this with profile likelihoods)  

• Simulated data approach



Analytical Methods for Structural Identifiability



Analytical Methods for Structural Identifiability

• Laplace transform - linear models only 

• Taylor series approach - more broad application, 
but only local info & may not terminate 

• Similarity transform approach - difficult to make 
algorithmic, can be difficult to assess conditions for 
applying theorem 

• Differential algebra approach - rational function 
ODE models, global info

Bellman 1970, Cobelli & DiStefano 1980, Evans & Chappell 2000, Ollivier 1990, Ljung & Glad 1994,  Audoly et al 2003



Analytical Methods for Structural Identifiability

• Laplace transform - linear models only 

• Taylor series approach - more broad application, 
but only local info & may not terminate 

• Similarity transform approach - difficult to make 
algorithmic, can be difficult to assess conditions for 
applying theorem 

• Differential algebra approach - rational function 
ODE models, global info

Bellman 1970, Cobelli & DiStefano 1980, Evans & Chappell 2000, Ollivier 1990, Ljung & Glad 1994,  Audoly et al 2003



Differential Algebra Approach

• Basic idea: use substitution & differentiation to 
eliminate all variables except for observed output (y) 

• Clear (divide by) the coefficient for highest derivative 
term(s) 

• This is called the input-output equation(s) 

• Contains all structural identifiability info for the model



Differential Algebra Approach

• Use the coefficients to solve for identifiability of the 
model 

• If unidentifiable, determine identifiable combinations 

• Find identifiable reparameterization of the model? 

• Easier to see with an example—



2-Compartment Example

• Linear 2-Comp Model  
 
 
 

• state variables (x) 

• measurements (y) 

• known input (u) (e.g. IV injection)

x1 x2
u

y = x1/V

k01

k21

k12

k02

 

!x1 = u + k12x2 − k01 + k21( )x1
!x2 = k21x1 − k02 + k12( )x2
y = x1 /V
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2-Compartment Example
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2-Compartment Example
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2-Compartment Example
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k12k21 − k02 + k12( ) k01 + k21( )( )y − u k12 + k02( ) /V − !u /V = 0
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2-Compartment Example
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y = x1 /V

x2 = k12x2

 !x1 = u + x2 − k01 + k21( )x1
 !x2 = k12k21x1 − k02 + k12( ) x2
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about one of  

the parameters



Differential Algebra Approach

• View model & measurement  
equations as differential polynomials 

• Reduce the equations using  
Gröbner bases, characteristic sets,  
etc. to eliminate unmeasured variables (x) 

• Yields input-output equation(s) only in terms of 
known variables (y, u) 

• Use coefficients to test model identifiability

x1 x2
u

y

k01

k21

k12
k02

Ollivier 1990, Ljung & Glad 1994,  Audoly et al 2003, etc.



Differential Algebra Approach

• From the coefficients, can often determine: 

• Simpler forms for identifiable combinations 

• Identifiable reparameterizations for model 

• Not always easy by eye—use Gröbner bases & other 
methods to simplify 

• Note about scaling as a useful first step (cf. 
nondimensionalization)



Differential Algebra Approach

• Convenient as a way to prove identifiability results for 
relatively broad classes of models



Numerical Methods for Identifiability Analysis



Numerical Approaches to Identifiability

• Analytical approaches can be slow, sometimes have 
limited applicability 

• Wide range of numerical approaches 

• Sensitivities/Fisher Information Matrix 

• Profile Likelihood 

• Many others (e.g. Bayesian approaches, etc.)



Numerical Approaches to Identifiability

• Most can do both structural & practical identifiability 

• Wide range of applicable models, often (relatively) fast 

• Typically only local



Simple Simulation Approach

• Simulate data using a single set of ‘true’ parameter 
values 

• Without noise for structural identifiability 

• With noise for practical identifiability (in this case 
generate multiple realizations of the data)



Simple Simulation Approach

• Fit your simulated data from multiple starting points 
and see where your estimates land 

• If they all return to the ‘true’ parameters, likely 
identifiable, if they do not—may be problems 

• Note—unidentifiability when estimating with ‘perfect’, 
noise-free simulated data is most likely structural
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where a0 ¼ aN. We used the parameter values in Table 1 as the
true parameters, and supposed that bW N¼ bIN¼ bI . Based on
this value, we calculated a¼ 0:035183. To determine a0 ¼ aN
and bW , we supposed an effective population size of 100,000
(to be on the same order of magnitude as the total epidemic,
which caused " 82,204 cases). This yields a0 ¼ aN¼ 3518:3 and
bW ¼ 2:64# 10$6.

As previously, we simulated 100 data sets for each distribution
and estimation method, with the resulting parameter estimates
given in Tables 4–7 and Fig. 10. In all cases, we found that adding
water data significantly decreases the variability on estimates of
the parameters, particularly those involved in the waterborne
transmission pathway. R0 estimates were also tighter when
water data was added. The inclusion of a second series of
measurements in the water also gives additional information on
the pathogen shedding rate, which was not available using case
data measurements alone.

5. Discussion

Parameter identifiability is an important question for epide-
miological modeling: the ability to estimate model parameters
from a given data set will determine the ability to estimate
fundamental quantities such as the basic reproduction number,
and to assess the efficacy of different intervention strategies. This
is particularly relevant for waterborne disease models because of
the public health importance of distinguishing multiple transmis-
sion pathways, which are often quite difficult to measure directly.
Mathematical modeling and parameter estimation has increas-
ingly been used to help guide public health practice (Temime
et al., 2008; Halloran and Lipsitch, 2005; Koopman, 2004; Chick
et al., 2003), and more specifically has been recently used in the
cholera epidemic in Haiti (Abrams et al., 2012; Tuite et al., 2011;
Date et al., 2011), making the issue of parameter identifiability an
important and commonly encountered problem in public health

Fig. 7. Scatterplots showing parameter estimates for 100 simulated data sets using least squares estimation for Poisson noise. True parameters (indicated by red stars) are
as given in Table 1. Note the significant dependence between x and bW . The wider range in bW results in a wider range of R0 estimates, as R0 is linear in bW . The
relationship between bW and x also results in a corresponding relationship betweenR0 and x. (For interpretation of the references to color in this figure caption, the reader
is referred to the web version of this article.)

Fig. 8. Examples of simulated data set using least squares estimation with four noise distributions (left to right): Poisson, Gaussian, negative binomial with variance equal
to 5 times the mean, and negative binomial with variance equal to 50 times the mean.
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Parameter Sensitivities

• Output sensitivity matrix 
(design matrix) 

• Closely related to  
identifiability 

• Insensitive parameters 

• Dependencies between columns
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Fisher Information Matrix

• FIM - NP x NP matrix 

• Useful in testing practical & structural ID - represents 
amount of information that the output y contains 
about parameters p 

• Cramer-Rao Bound:  FIM-1 ≤ Cov(p) 

• Rank(FIM) = number of identifiable parameters/
combinations



Fisher Information Matrix

• For identifiability analysis, often more useful to 
consider (sometimes denoted the sensitivity FIM):  
 

• Can also derive as usual FIM with assumption of 
normally distributed measurement error with fixed 
variance (e.g. 1)
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Identifiability & the FIM

• Covariance matrix/confidence interval estimates from 
Cramér-Rao bound: Cov ≥ FIM-1 

• e.g. large confidence interval ⇒ probably at least 
practically unID 

• Often can detect structural unID as ‘near-
infinite’ (gigantic) variances in Cov ~ FIM-1



Identifiability & the FIM

• Rank of the FIM is number of identifiable 
combinations/parameters - can do a lot by testing 
sub-FIMs and versions of the FIM 

• Use FIM to find blocks of related parameters & how 
many to fix (not estimate) 

• Identifiable combinations - can often see what 
parameters are related, but don’t know form 

• Interaction of combinations



• Use eigenvalues & eigenvectors to find sensitive/identifiable/stiff/
active  directions vs. insensitive/unidentifiable/sloppy/inactive 

• E.g. in active subspaces, from Constantine (2015): 
 
 

• Can write this as the weighted average sFIM:  
 
 

• In FIM form, QOI could be univariate or multivariate

Connections with sloppiness, active subspaces

C =

Z
(rf)(rf)T ⇢(✓) d✓



Identifiability & the FIM

• But, be careful—FIM is local & asymptotic 

• Local approximation of the curvature of the likelihood

Raue et al. 2010Brouwer, Meza, Eisenberg 2017

parameter value



Profile Likelihoods



Profile Likelihood

• Want to examine likelihood surface, but often high-
dimensional 

• Basic Idea: ‘profile’ one parameter at a time, by fixing 
it to a range of values & fitting the rest of the 
parameters 

• Gives best fit at each point 

• Evaluate curvature of likelihood to determine 
confidence bounds on parameter (and to evaluate 
parameter uncertainty)



Profile Likelihood

• Choose a range of values for parameter pi 

• For each value, fix pi to that value, and fit the rest of 
the parameters 

• Report the best likelihood/RSS/cost function value for 
that pi value 

• Plot the best likelihood values for each value of pi—
this is the profile likelihood



Profile Likelihoods

identifiable
structurally 

unidentifiable
practically 

unidentifiable



Potential issues with the profile likelihood

Figure 4: Parameter combinations for the model in Example 2. Nearly
full rank subsets shaded, as determined by subset rank search.

Example 2: 2-compartment model with a rank-deficient pa-

rameter pair. To illustrate how Step 3 works when the number
of parameters is greater than the number of combinations plus
one, we consider the following simple variant of the previous
example:

ẋ1 = k1x2 � (k2 + k3 + k4)x1

ẋ2 = k4x1 � (k5 + k1)x2

y = x1/V
(7)

which is equivalent to Eq. (5) with k12 = k1, k01 = k2 + k3, k21 =
k4, and k02 = k5. The identifiable parameter combinations are
thus k1k4, k2 + k3 + k4, and k1 + k5, with V again identifiable.
A diagram of these combinations is given as the bottom com-
ponent of the example in Figure 1. Based on these combina-
tions, note that one of k2 and k3 must be fixed when profiling
in order to yield an identifiable model (as there are 3 combi-
nations but 5 k’s). As an example set of parameters, we take
k1 = 2.3, k2 = 0.421, k3 = 0.52, k4 = 0.61, k5 = 1.23, and
V = 2.2 (as before, the results are similar for a range of param-
eter values).

The results for Steps 1 and 2 are similar to Example 1. The
full model FIM has rank 4 and V is identifiable so we expect
3 identifiable combinations. When we consider the subsets of
parameters in Step 3, we find that {k5, k1, k4, k2}, {k5, k1, k4, k3},
and {k2, k3} satisfy our criteria. These subsets form a single
connected component with a loose pair (Figure 4). Note that
the loose pair, {k2, k3} is the only rank deficient pair. As a result,
any subset including both of these parameters cannot satisfy the
condition in Step 3.

To illustrate the necessity of Step 3, Figure 5 shows an exam-
ple result of the relationship between k4 and k2 if all parameters
except k4 are fitted. As k4 is shifted along the x-axis, k2 and k3
are not fully constrained, i.e. they both may take on any values
that maintain k2+k3 = 0.941�k4. This results in the appearance
of a scatterplot in Figure 5 with no clear relationship between
k4 and k2, in spite of the fact that they are part of an identifiable
combination.

Thus, in Step 4, we profile parameters within each subset,
fitting only the remaining parameters in the subset. This re-
sults in 10 distinct parameter relationships from the likelihood
profiles, shown in Figure 6. For e�ciency, it is not necessary
to profile parameters twice where subsets overlap to capture all
pairwise relationships. That is, assuming parameters in sub-
sets {k5, k1, k4, k2} and {k2, k3} have been profiled, we need only

Figure 5: Example parameter relationship for k4 and k2 when there
are loose parameters in the profile fit (i.e. there are more parameters
than degrees of freedom) The resulting parameter relationship shows
no precise relationship between k4 and k2, even though the likelihood is
flat in this region. We note that the general trends of the relationships
between parameters can still be seen because we’re starting close to
the true values in each step of the profile, but the specific form of the
identifiable combinations can’t be determined.

compute a profile for k3 in the remaining subset.
In Step 5, rational function fitting of the parameter relation-

ships in Figure 6 yields the following equations:

k1 =
1.403

1.031 � k2

k4 = 1.031 � k2

k5 =
2.23643 � 3.53k2

1.031 � k2

k4 =
1.403

k1

k5 = 3.53 � k1

k5 = 3.53 � 1.403
k4

k1 =
1.403

1.13 � k3

k2 = 0.941 � k3

k4 = 1.13 � k3

k5 =
2.5859 � 3.53k3

1.13 � k3

(8)

From the second, fourth, fifth, eighth, and ninth equations
above, we see that k2 + k3, k3 + k4, k2 + k4, k1 + k5, and k1k4
must be terms within our identifiable combinations. As we
expect to have 3 identifiable combinations, we can see from
these expressions that our identifiable combinations are most
likely k2 + k3 + k4, k1 + k5, and k1k4. Testing this against the
remaining equations in Eq. (8) shows that indeed these are the
identifiable combinations, which matches the combinations
found analytically above.
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ẋ2 = k4x1 � (k5 + k1)x2

y = x1/V
(7)

which is equivalent to Eq. (5) with k12 = k1, k01 = k2 + k3, k21 =
k4, and k02 = k5. The identifiable parameter combinations are
thus k1k4, k2 + k3 + k4, and k1 + k5, with V again identifiable.
A diagram of these combinations is given as the bottom com-
ponent of the example in Figure 1. Based on these combina-
tions, note that one of k2 and k3 must be fixed when profiling
in order to yield an identifiable model (as there are 3 combi-
nations but 5 k’s). As an example set of parameters, we take
k1 = 2.3, k2 = 0.421, k3 = 0.52, k4 = 0.61, k5 = 1.23, and
V = 2.2 (as before, the results are similar for a range of param-
eter values).

The results for Steps 1 and 2 are similar to Example 1. The
full model FIM has rank 4 and V is identifiable so we expect
3 identifiable combinations. When we consider the subsets of
parameters in Step 3, we find that {k5, k1, k4, k2}, {k5, k1, k4, k3},
and {k2, k3} satisfy our criteria. These subsets form a single
connected component with a loose pair (Figure 4). Note that
the loose pair, {k2, k3} is the only rank deficient pair. As a result,
any subset including both of these parameters cannot satisfy the
condition in Step 3.

To illustrate the necessity of Step 3, Figure 5 shows an exam-
ple result of the relationship between k4 and k2 if all parameters
except k4 are fitted. As k4 is shifted along the x-axis, k2 and k3
are not fully constrained, i.e. they both may take on any values
that maintain k2+k3 = 0.941�k4. This results in the appearance
of a scatterplot in Figure 5 with no clear relationship between
k4 and k2, in spite of the fact that they are part of an identifiable
combination.

Thus, in Step 4, we profile parameters within each subset,
fitting only the remaining parameters in the subset. This re-
sults in 10 distinct parameter relationships from the likelihood
profiles, shown in Figure 6. For e�ciency, it is not necessary
to profile parameters twice where subsets overlap to capture all
pairwise relationships. That is, assuming parameters in sub-
sets {k5, k1, k4, k2} and {k2, k3} have been profiled, we need only

Figure 5: Example parameter relationship for k4 and k2 when there
are loose parameters in the profile fit (i.e. there are more parameters
than degrees of freedom) The resulting parameter relationship shows
no precise relationship between k4 and k2, even though the likelihood is
flat in this region. We note that the general trends of the relationships
between parameters can still be seen because we’re starting close to
the true values in each step of the profile, but the specific form of the
identifiable combinations can’t be determined.

compute a profile for k3 in the remaining subset.
In Step 5, rational function fitting of the parameter relation-

ships in Figure 6 yields the following equations:

k1 =
1.403

1.031 � k2

k4 = 1.031 � k2

k5 =
2.23643 � 3.53k2

1.031 � k2

k4 =
1.403

k1

k5 = 3.53 � k1

k5 = 3.53 � 1.403
k4

k1 =
1.403

1.13 � k3

k2 = 0.941 � k3

k4 = 1.13 � k3

k5 =
2.5859 � 3.53k3

1.13 � k3

(8)

From the second, fourth, fifth, eighth, and ninth equations
above, we see that k2 + k3, k3 + k4, k2 + k4, k1 + k5, and k1k4
must be terms within our identifiable combinations. As we
expect to have 3 identifiable combinations, we can see from
these expressions that our identifiable combinations are most
likely k2 + k3 + k4, k1 + k5, and k1k4. Testing this against the
remaining equations in Eq. (8) shows that indeed these are the
identifiable combinations, which matches the combinations
found analytically above.

6

k6
k7

k8

k5 k1 k4
k2

k3

Eisenberg & Hayashi, Math Biosciences 2014



Potential issues with the profile likelihood
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Profile Likelihood & ID

• Can generate confidence bounds based on the 
curvature of the profile likelihood 

• Flat or nearly flat regions indicate identifiability issues 

• Can generate simulated ‘perfect’ data to test 
structural identifiability



Profile Likelihood

• Can also help reveal the form of identifiable 
combinations 

• Look at relationships between parameters when 
profiling 

• However, can be problematic when too many 
degrees of freedom 

• Can do the analogous thing in an MCMC or Bayesian 
context by looking at pairwise plots of parameter 
space samples



Dengue Model Example



Measurement Model &  
Structural Identifiability

• Measure human incidence data,                     , integrated 
to weekly incidence 

• Differential algebra approach and FIM-based approaches 
show structural identifiability

y = h↵Eh





What about practical identifiability?



What about practical identifiability?



How does this affect R0?



Practically Identifiable Combinations



Intervention predictions

Kao & Eisenberg, Epidemics, 2018.



Sidenote: Identifiability in a Bayesian Context

• Unidentifiability can affect the performance of MCMC and 
other sampling methods, and can lead to broad, flat 
posteriors or heavy reliance on the prior 

• Simple unidentifiable model example:  
 
 
 
 

• Try MCMC (e.g. with Metropolis-Hastings or variants of)

dS

dt
= ��SI + �I

dI

dt
= �SI � �I

y = kNI



Unidentifiable model

ß

k

N



Correlation between k and N



Reparameterize to make the model identifiable

ß

kN



Adding a strong prior

ß

k

N



Conclusions

• Many related questions and potential issues when 
connecting models to data: observability, 
distinguishability & model selection, reparameterization & 
model/parameter reduction, and more 

• Many other methods! (eigenvalues of FIM, sloppy 
models, active subspaces, Bayesian methods, & more) 

• Depending on amount of data, model complexity, model 
type, and more, different approaches may work in 
different circumstances



Conclusions

• Identifiability—an important question to address when 
estimating model parameters 

• Common problem in math bio (identifiability-robustness 
tradeoff) 

• Many approaches, both numerical and analytical

End



Questions?

comic by Olivia Walch (UM): 
http://imogenquest.net

http://imogenquest.net

