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Notes: This lab is somewhat modular—feel free to choose what problems you find most interesting.
You might not finish all the sections—that’s okay! Solution code in Matlab, R, and python is
available here: https://github.com/epimath/param-estimation-SIR for most of the questions,
so you can see how things work out for the parts you don’t finish.

Part 1: Structural identifiability for the SIR model

We will consider a version of the classical SIR model that you’ve seen the previous lectures:

Ṡ = µN − bSI − µS

İ = bSI − (µ+ γ)I

Ṙ = γI − µR

with measurement equation y = kI. The variables S, I, and R represent the number of susceptible,
infectious, and recovered individuals, and we take y to indicate that we are measuring a proportion
of the infected population (e.g. if not all cases are reported). The parameters µ, b, γ,N , and k rep-
resent (respectively) the birth/death rate, transmission parameter, recovery rate, total population
size, and the proportion of the infected population which is reported/observed.

Evaluate the structural identifiability of this model using the differential algebra method, either
by hand or with the web app COMBOS (http://biocyb1.cs.ucla.edu/combos/)1 (or you can
use Mathematica/Maple if you have it). If you use COMBOS, you have to name your state variables
using x’s, so let x1 = S and x2 = I.

• Are all the parameters for this model structurally identifiable?

• If any are not, what are the identifiable combinations? Why do you think the combinations
have this structure?

• Reparameterization: What happens if we re-scale the model to be in terms of fractions of the
population instead of individuals? In other words, rescale the model to be in terms of new
variables: s = S/N, i = I/N, and r = R/N . When you do, you will be able to combine some
parameters to let β = bN and κ = kN . Rewrite your model equations in this rescaled and
reduced parameter form and test the identifiability of β and κ.

1Meshkat N, Kuo CEZ, DiStefano J III (2014) On Finding and Using Identifiable Parameter Combinations in
Nonlinear Dynamic Systems Biology Models and COMBOS: A Novel Web Implementation. PLOS ONE 9(10):
e110261. https://doi.org/10.1371/journal.pone.0110261
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Part 2: Parameter estimation and uncertainty with the SIR model

Now that we understand a little more of the structural identifiability picture for the SIR model, let’s
estimate parameters and investigate the uncertainty and practical identifiability of the estimates.

We will work with the scaled version of the model, where S, I, and R represent the fraction
of the population that is susceptible, infectious, and recovered, respectively (these were denoted
s, i, and r in the previous problem). We’ll also assume that, since the outbreak we consider is
over a short timescale, the population birth-death rate is negligible, i.e. let µ = 0 (since there are
probably few births/deaths during this timeframe). The equations are given by:

Ṡ = −βSI
İ = βSI − γI

Ṙ = γI

with the measurement equation is y = κI, where κ is a product of two things: the population
size (N from the previous problem), and the fraction of cases that are reported (k in the previous
problem). Thus, y = κI converts the fraction of the population infectious to the observed number
of individuals infectious (which is what we measure). The parameters β and γ represent (respec-
tively) the transmission parameter and recovery rate.

1) Model Simulation. Simulate the SIR model and plot both the data set (the data set is
provided) and the measurement equation y = κI. Use the following parameter values: β = 0.4,
γ = 0.25, κ = 80000.

For initial conditions, we can choose some approximate values from the data by noticing that
if y = κI, then I(0) = y(0)/κ ≈ data(0)/κ, i.e. we can approximate I(0) by the first data point
divided by κ (data(1)/kappa in MATLAB). Since the data begins early in the epidemic, we can
take R(0) = 0, and let S(0) = 1 − I(0), since the sum of the fractions of the population in S, I,
and R must sum to 1.

2) Parameter Estimation. Next, write code to estimate β, γ, and κ using Poisson maximum
likelihood and the dataset provided.2 Use the parameter values in 1) as starting parameter values,
and you can use the initial conditions from 1) as well (note though that they depend on k, which is a
fitted parameter—so while we aren’t fitting the initial conditions, they will need to change/update
as we fit the parameters!). This means you will need to update your initial conditions inside the cost
function, so MATLAB/R uses the updated initial conditions when it tries new parameter values.

If you can, it’s nice to change the settings in the optimization function so that you can see the
progress of the optimization algorithm as it goes. This can be done in MATLAB by adding an
optimset argument to the fminsearch command:

fminsearch(@(p)sirCost(times,p,data,x0fcn,yfcn), params, optimset(’Display’,’iter’));

Plot the data together with your model using the parameter estimates you found. Be sure to
plot the data as circles (‘o’ in the plot function in MATLAB) and your model simulation as a line
so that you can compare your model with the data easily. Just looking by eye, how well would you
say the model fits the data?

2Note that if you’re coding in R, we’ll estimate 1/κ rather than estimating κ itself. This is because κ has a huge
potential range, which slows down the optimizer in R, but 1/κ is usually between 0 and 1.
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3) Identifiability with the Fisher Information Matrix (FIM). Generate the output sensitiv-
ity matrix for the model, at the time points given by the data set. You can use the provided code
for calculating the FIM (e.g. MiniFisher.m in MATLAB).

Use the sensitivity matrix to calculate the simplified form of the FIM, given by χTχ, where χ is
your output sensitivity matrix, and evaluate it at your parameter estimates from 2). What is the
rank of the FIM? What does this tell you about the identifiability of your model? Does it match
the results from Part 1?

4) Parameter Uncertainty: Profile Likelihoods. Now let’s examine the structural and prac-
tical identifiability of the model parameters and generate confidence intervals using the profile
likelihood. Generate profile likelihoods for each of your model parameters (β, γ, and κ). You can
play with the range to profile the parameters over, but something like ±25% will likely work well.

For the threshold to use in determining your confidence intervals, we note that 2(NLL(p) −
NLL(p̂)) (where NLL is the negative log likelihood) is approximately χ2 distributed with degrees
of freedom equal to the number of parameters fitted (including the profiled parameter). Then an
approximate 95% (for example) confidence interval for p can be made by taking all values of p that
lie within the 95th percentile range of the χ2 distribution for the given degrees of freedom.

In this case, for a 95% confidence interval, we have three total parameters we are estimating
(β, γ, and κ), so the χ2 value for the 95th percentile is 7.8147. Then the confidence interval is any
p such that:

NLL(p) ≤ NLL(p̂) + 7.8147/2

In other words, our threshold is NLL(p̂) + 7.8147/2 = NLL(p̂) + 3.9074, where NLL(p̂) is the cost
function value at our parameter estimates from 2).

Plot the threshold on top of your profiles. Are your parameters practically identifiable? What
are the 95% confidence intervals for your parameters?

5) Practical Unidentifiability Issues and Early Epidemic Data. Lastly, let us consider
the case where you are attempting to fit and forecast an ongoing epidemic, with incomplete data.
Truncate your data to only include the first seven data points (just past the epidemic peak), then
re-fit the model parameters, calculate the FIM, and generate the profile likelihoods (i.e. redo 2 - 4
above). You may need to adjust the percentage range you explore in your profile likelihoods.

• How do your parameter estimates change?

• Does the practical identifiability of the parameters change? How so?

• If any of the parameters were unidentifiable, examine the relationships between parameters
that are generated in the profile likelihoods (i.e. plot the profiled parameter vs. the estimated
values of the other parameters at each point in the profile—see lecture slides for more info).
Can you see any interesting relationships between parameters? What do you think might
be going on—what might explain the parameter relationships (i.e. identifiable combinations)
that you see?

π) Extra problems. Try adapting the code so that you estimate the initial conditions as unknown
parameters! If you do, start by fixing R(0) = 0, so that you fit I(0) and let S(0) = 1 − I(0). Then
try fitting R(0) as well, and see how this affects the identifiability of your system.

Test the structural identifiability of this model too (e.g. with COMBOS)—you might think it
should be the same as Part 1 since our only change was to set µ = 0, but see what happens! How
do the results compare to what you would expect? Why?
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Figure 1: SIWR model of cholera transmission.

Part 3: Modeling Cholera Transmission

Cholera and many waterborne diseases exhibit multiple pathways of infection, which can be mod-
eled (for example) as direct and indirect transmission. A major public health issue for waterborne
diseases involves understanding the modes of transmission in order to improve control and preven-
tion strategies (see e.g. Hartley 2006). An important epidemiological question is therefore: given
data for an outbreak, can we determine the role and relative importance of direct (human-mediated)
vs. environmental/waterborne routes of transmission?

To examine this question, we will use the SIWR model developed by Tien and Earn (2010),
shown in Figure 1. We will combine this model with modified data from a recent cholera outbreak.
The scaled SIWR model is given by the following equations:

Ṡ = −βISI − βWSW

İ = βISI + βWSW − γI

Ẇ = ξ(I −W )

Ṙ = γI

where

• S, I, and R are the fractions of the population who are susceptible, infectious, and recovered

• W is a scaled version of the concentration of bacteria in the water

• βI and βW are the transmission parameters for direct (human-human) and indirect (environ-
mental) cholera transmission

• ξ is the pathogen decay rate in the water

• γ is the recovery rate

The recovery time for cholera is reasonably well known, so we can fix γ = 0.25 based on previous
work (Tuite 2011, etc.) (i.e. we don’t need to estimate this). The SIWR model has previously
shown to be structurally identifiable using the differential algebra approach (Eisenberg 2013).

Data & Measurement Equation: Data from a recent outbreak in Angola is given on the course
website. To connect the model with the data, we will use the following measurement equation:
y = I/k, where 1/k is a combination of the reporting rate, the asymptomatic rate, and the total
population size.
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Estimation: For fitting, we’ll use ordinary least squares (OLS) for now, i.e. Cost =
∑

i(datai−yi)2.
However, if you want to, feel free to try another cost function also! They can give quite different
answers, both for the parameter estimates and for their uncertainty/practical identifiability, so it
can be interesting to see.

1) SIWR Model Simulation. Write code to simulate the SIWR model and plot both the data
set provided and the measurement equation y = I/k (i.e. plot both the data and y in one graph
vs. time). Use the following parameter values: βI = βW = 0.75, ξ = 0.01, k = 1/89193. For initial
conditions, similarly to Part 2, we will use I(0) = kz(0) (i.e. k times the first data value), and take
R(0) = 0, and let S(0) = 1 − I(0). Lastly, let W (0) = 0.

2) Parameter Estimation. Write code to estimate the model parameters βI , βW , ξ, and k using
the data set provided. The parameters µ and γ will remain fixed (not fit). Use the parameter
values from 1) as starting values and the initial conditions from 1) as well.

Plot the cholera data together with your model using the parameter estimates you found. Be
sure to plot the data as circles (in MATLAB, use ‘o’ in the plot function) and your model simulation
as a line so that you can compare your model with the data easily.

• How well does the model fit the data? Do you notice any runs or correlated residuals? Are
there any potential problems with the model fit?

• Based on your estimated parameters, which transmission pathway would you say is more
important/contributes more to this outbreak?

3) Practical Identifiability Issues. Unfortunately, it turns out that the waterborne transmission
pathway parameters, βW and ξ, are often practically unidentifiable when noisy data is considered
(Eisenberg 2013). To examine this in a simple way, try simulating your model twice, first with the
estimated parameters you found in 2), and then again where you take βW to be 5/6 the value in
2) and ξ to be 6/5 the value in 2).

Plot both versions of the models together, along with the data. How different are the two fits to
the data? What does this tell you about the identifiability of these two parameters? How does that
affect the certainty of our estimates of the relative contributions of the two transmission pathways?

4) Profile Likelihoods. Generate profile likelihood plots of your parameters (you may want to
adjust the range you profile over). Note: because we’re using least squares, this will change our
threshold value for the profile likelihoods! You can use the lecture slides to recalculate the threshold
for the 95% confidence intervals, and we can go through it if you have any questions.

How does this match up with the results of Problems 3? What can you conclude about your
model identifiability? If any parameters are unidentifiable, examine the relationships between these
parameters and the other parameters, by plotting the profiled parameter vs the estimated values
of the other parameters at each point in the profile (see lecture slides for more info). Can you
distinguish any potential identifiable combinations?

5


