
AI/large language models and interpretability

Complex Systems 530 - Marisa Eisenberg

Large language models

• ChatGPT (UM’s version: http://umgpt.umich.edu)

• Llama

• Bard

How are large language models (LLMs) like Chat-
GPT structured?

• GPT = Generative Pretrained Transformer

• Generative: generates the next word

• Pretrained: what it sounds like, i.e. trained ahead of time

• Transformer: the type of neural network model that many
LLMs use

• Built to recognize and work with sequences of inputs to
generate the next thing (you can do this with other stuff
too, e.g. images —> video, genetic sequences, etc.)

LLMs

• Transformer models - how they work

• What are they trained on, what are they trained to do

• What they do/don’t do

How is are large language models (LLMs) like
Chat-GPT structured?

• LLMs are built to predict the next word in a sequence

• Note the input sequence in a chat-GPT session is the whole
conversation so far

https://mark-riedl.medium.com/a-very-gentle-introduction-to-large-language-models-without-the-hype-5f67941fa59e

Text example, temperature

• Chat-GPT 2

• Input: “Complex systems is a fascinating”

• Top 5 most probable outputs:

• But if you just take the most probable output every time?

Adapted from: https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/

You get sort of repetitive nonsense

You get sort of repetitive nonsense

You need to inject some randomness (temperature)

Although it can take you in some funny directions
depending how you set the level of randomness

Distribution of possible next words (notice it gets
power-law-y)

Adapted from: https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/

Distribution of possible next words (notice it gets
power-law-y)

Adapted from: https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/

How do you figure out word probabilities?  
Thinking about n-grams

• letter n-grams get better as we increase n

• word n-grams too (random vs 2-gram examples)

https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/

n-grams and word probabilities

• Why not just use really long n-grams? Should generate
longer sequences of words with the right overall
probabilities

• But we don’t have nearly enough data! Not enough
English text in the world to do this

• Web: few hundred billion words 
Digitized books: ~hundred billion words.

https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/

n-grams and word probabilities

• 40,000 common words —> number of 2-grams = 1.6
billion

• Number of possible 3-grams = 60 trillion

• 10 words? 20? More than would ever be possible to
write down even if that’s all anyone ever did

• Instead build a model that lets us estimate the sequence
probabilities even if we’ve never seen that exact input
string—this is what LLMs do

Okay, so how do we do it? Usually something like:

• Tokenize: get the data in a numerical form we can work
with

• Embed/encode the inputs

• Process them (attention, transformers, etc) - various
blocks of neural networks here

• De-embed/decode

• Spit out the next word you chose

Modular structure (blocks) in large AI models

http://jalammar.github.io/illustrated-stable-diffusion/
By Vectorization: Mrmw - Own work based on: Full GPT architecture.png:,

CC0, https://commons.wikimedia.org/w/index.php?curid=146645810

Tokens

• There are ~50,000 commonly used words in the English
language

• So we can take a piece of text and represent it as a
sequence of numbers that encode which word

• But we do something slightly more efficient—tokens
rather than words (this is part of why LLMs can
sometimes produce weird made up words

Tokens

https://blogs.rstudio.com/ai/posts/2023-05-25-llama-tensorflow-keras/

Token examples

https://blogs.rstudio.com/ai/posts/2023-05-25-llama-tensorflow-keras/

More frequent tokens get lower IDs

Encoding/embedding:

importance of dimension reduction

https://mark-riedl.medium.com/a-very-gentle-introduction-to-large-language-models-without-the-hype-5f67941fa59e

Even worse for longer input sequences

https://mark-riedl.medium.com/a-very-gentle-introduction-to-large-language-models-without-the-hype-5f67941fa59e

But many things functionally act the same in human
language—we don’t need such high dimension

• Anything that means royalty can  
probably lead to the same word (e.g.  
throne vs. chair/toilet/horse/etc)

• This is part of how LLMs learn to understand language!

• Forcing the model to  
reduce to a lower  
dimension means we have to  
learn common  
structures

https://mark-riedl.medium.com/a-very-gentle-introduction-to-large-language-models-without-the-hype-5f67941fa59e

Embedding helps capture meaning

https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/

Embedding

• How much did we crunch things down?

• 50K token options are converted (by a single-layer neural
net) into an embedding vector of length 768 for GPT-2 and
12,288 for ChatGPT’s GPT-3

• Knowing when to reduce dimension and when not to is part
of the art that makes it not just a universal approximator

• E.g. compare to digits example in http://
neuralnetworksanddeeplearning.com/chap1.html (could
do four output neurons but works much better with 10)

http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap1.html

Positional encoding

• Keep track of both the what the words are and their position relative to each
other

• Process those two pieces of information together

• Example: hello hello hello hello hello hello hello hello hello hello bye bye bye
bye bye bye bye bye bye bye

https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/

Transformer blocks

• Process the embedded text input

• Made up of several sub-layers

• Attention heads alternating with feedforward networks

Transformer blocks

• Multi-head attention: Self-attention operates in multiple
"attention heads" to capture different types of
relationships between tokens.

• Feedforward neural networks: The output of the self-
attention layer is passed through feedforward layers.
These networks apply non-linear transformations to the
token representations, allowing the model to capture
complex patterns and relationships in the data.

https://www.ibm.com/topics/transformer-model

Attention heads

• Query, Key, Value, Residual

• Input a query and this acts as the key —> value is which
words that word “attends” to (well, a weighted combination
but yep)

https://mark-riedl.medium.com/a-very-gentle-introduction-to-large-language-models-without-the-hype-5f67941fa59e

LLMs

• In the end, they are almost sort of like really good search
on billions of examples of data—weighting what we want
next based on where we are

• We think of things like writing an essay as hard and
creative, but in some sense they are just borrowing from
us for ‘the hard part’ (the creativity, etc)

• Autoregressive (errors accumulate)

How do we train these?

• How do we train these? 175 billion parameters in chat
GPT

• Running out of data

https://arxiv.org/pdf/2001.08361.pdf

How do we train these?

• How do we train these? 175 billion parameters in chat
GPT

• Memorization

• Identifiability

Explainable AI and mechanistic interpretability

• We need to be able to understand why and how AI does
what it does so that we can control/regulate/safely use it

• Part of the point of AI is to be able to brute force analyze
much larger amounts of data than we could ever hope to do

• Pretty much all explainable AI approaches are trying to do
some kind of dimensionality reduction

• Complex systems tools can help to understand ML/AI and
how it works—both to make sure it isn’t learning something
silly (cancer & rulers example) and to know if there is bias

Explainable AI and mechanistic interpretability

• Explainable AI – broader umbrella term for understanding
why and how AI/ML systems exhibit a given behavior/
result

• Mechanistic interpretability – more specifically the idea of
reverse engineering neural networks (like we would a
device or compiled program

How do AI/ML models represent concepts?

(Do they?)

• Each layer in a neural network is typically doing a matrix
multiplication and then a (potentially nonlinear) transformation
—so the input data is a vector that gets transformed in
various ways to live in a high dimensional space

• So some data must be “closer” to a given data point/
prompt/input than others, which suggests some sort of
association

• What does closeness tell us in the input space? Along the
way through the neural network layers? At the end of the
neural network in its output prediction?

Example: optimize prompt to return a particular
token

• These word clouds show
the most common words
used if you want
ChatGPT to give
“science” or “art” as the
next word

• Allows us to understand
what words are “nearest”
the target word in some
sense—how ChatGPT
associates words

https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation

https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation
https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation

How do AI/ML models represent concepts?

(Do they?)

• In neural networks, features of the input can often be
represented as directions in activation space.

• Semantically related tokens often appear near one
another in these spaces

• Is this similar to how humans organize concepts and
ideas?

Neural network models appear to encode features
in which neurons fire

https://www.lesswrong.com/posts/jLAvJt8wuSFySN975/mechanistic-interpretability-quickstart-guide

https://www.lesswrong.com/posts/jLAvJt8wuSFySN975/mechanistic-interpretability-quickstart-guide
https://www.lesswrong.com/posts/jLAvJt8wuSFySN975/mechanistic-interpretability-quickstart-guide

How do AI/ML models represent concepts?

• Neural network models often seem to represent features/concepts in
some kind of decomposable way—a linear space, i.e. a coordinate
system where something like 0.5*featureA + 2*featureB can make
sense

• Similar to cardinal directions, or color space (though for the mathy
folks, color usually isn’t really a proper vector space without some
modifications)

• E.g. V("king") - V("man") + V("woman") = V("queen")

• Even more wild:

• V(“apples”) − V(“apple”) ≈ V(“cars”) − V(“car”)

By SharkD - Own work. Download source code., CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=70991647https://aclanthology.org/W14-1618.pdf

Example – face vectors

• https://gabgoh.github.io/ThoughtVectors/  
(scroll down to the checkbox examples)

https://gabgoh.github.io/ThoughtVectors/
https://gabgoh.github.io/ThoughtVectors/

How do AI/ML models represent concepts?

• What are the axes in this space? (i.e. the cardinal
directions, or the basis if you’ve had linear algebra)

• Is there a ”good” basis that reflects some of the meaning
we see? (e.g. a gender direction, a pluralization direction,
etc.) What do different directions/vectors in this space
mean?

• E.g. ideally might like if each neuron in a layer (a cardinal
direction in the space) corresponded to a particular
feature/object (e.g. the hat neuron, the glasses neuron)

How do AI/ML models represent concepts?

• But no, turns out this is complicated!

• Neural networks trained on large data often exhibit
polysemanticity and superposition—where there are
more features represented in the space than there are
dimensions

• Particularly true in the common case where we have
some sparsity to our data/features

Sparse vs. dense features

https://induraj2020.medium.com/what-are-sparse-features-and-dense-features-8d1746a77035

https://transformer-circuits.pub/2022/toy_model/index.html#motivation – this is a nice overview btw!

https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html

Superposition

• Superposition is one of the things that leads to
polysemanticity, where neurons activate for more than
one concept/feature

https://transformer-circuits.pub/2022/toy_model/index.html#motivation

https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html

Superposition

• Basically, the model is trying to approximate an even higher
dimensional model where each object/feature could have its own
direction/neuron

https://transformer-circuits.pub/2022/toy_model/index.html#motivation

https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html

How does superposition emerge? Why is it useful?

https://transformer-circuits.pub/2022/toy_model/index.html#motivation

https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html

For a bigger network

https://transformer-circuits.pub/2022/toy_model/index.html#motivation

https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html

Superposition undergoes a bifurcation!

• There is a phase change
—a bifurcation—where
as the density decreases
(i.e. we get more sparse),
then the neural networks
will start using
superposition

• If very dense then we just
either learn or don’t learn
each feature

https://transformer-circuits.pub/2022/toy_model/index.html#motivation

https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html

Superposition undergoes a bifurcation!

• Depending on
dimensionality, can
also set it up so it
always learns some
features but others are
“extras” and either go
into superposition or
aren’t learned

https://transformer-circuits.pub/2022/toy_model/index.html#motivation

https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html

Superposition makes interpretability complicated

• Neurons are polysemantic and so don’t form basis
directions that are ‘nice’ or clearly interpretable (nor do
other bases)

• Interference can make it harder to decompose features/
objects/concepts in the space of neural network activation

• Makes things like circuit analysis complicated

• But—it is also part of why neural networks perform well
(pushing the network into a non-superposition regime
usually makes the fit worse)

Mechanistic interpretability

• Curse of dimensionality issues – high dimensional inputs that are passed
through maps to other high dimensional spaces

• What to do?

• Study toy networks—easier to solve but often misses the emergent
property we want

• Study networks locally around a behavior of interest (e.g. local bases
and ignore superposition in some sense, or saliency maps do this to
some degree)

• This problem (and these two solution ideas) are not new—this is very
common for many complex systems (not to say it has an easy solution
though)

Mechanistic interpretability

• These models work because they don’t try to distill the
large complicated system (the data) into something
simpler (unlike mechanistic/complex systems models)

• But that means these models are still themselves quite
large complicated systems

• There is no free lunch, you have to deal with the
complicatedness sometime

• In the end, do we need things like stat mech/mean fields/etc.
for these systems? Also a lot of work to understand how and
when these bifurcations happen (when is it interpretable vs
not, etc)

• Often people actually train a simpler ML/AI model on the
structure to learn it—sort of the beginnings of this kind of idea

• Still takes a lot of human work to understand what’s going on
and what the features/directions you find even mean

• Example using a sparse autoencoder: https://transformer-
circuits.pub/2023/monosemantic-features/index.html

Mechanistic interpretability

Circuit analysis and smaller networks

• Mostly done on smaller models (e.g. GPT-2 small) and
requires a lot of by hand analysis (although some
progress on automating parts of it)

• “Grokking” – improvement in test accuracy after training
is already perfect – seems to (sometimes) correspond to
generalizing to an algorithm?

• Fourier transforms

• Indirect object identification

https://proceedings.neurips.cc/paper_files/paper/2023/file/
34e1dbe95d34d7ebaf99b9bcaeb5b2be-Paper-Conference.pdf

https://arxiv.org/pdf/2301.05217.pdf
https://arxiv.org/abs/2211.00593

Circuit analysis and smaller networks

• But it’s not always so clear—small changes to
hyperparameters can totally change the algorithm used
by the neural network

• Sometimes the algorithms that we find are human
interpretable and sometimes not

• Gets tougher as we get to larger models

• No reason that these systems need to use a human-
sensible algorithm (though probably there is a drive
toward some degree of simplicity)

https://proceedings.neurips.cc/paper_files/paper/2023/file/56cbfbf49937a0873d451343ddc8c57d-Paper-Conference.pdf

Neural network learning modular arithmetic

https://proceedings.neurips.cc/paper_files/paper/2023/file/56cbfbf49937a0873d451343ddc8c57d-Paper-Conference.pdf

https://proceedings.neurips.cc/paper_files/paper/2023/file/56cbfbf49937a0873d451343ddc8c57d-Paper-Conference.pdf

Do LLMs “understand” things?

https://medium.com/@blaisea/do-large-language-models-understand-us-6f881d6d8e75

https://medium.com/@blaisea/do-large-language-models-understand-us-6f881d6d8e75
https://medium.com/@blaisea/do-large-language-models-understand-us-6f881d6d8e75

LLMs do show some ability to generalize

• Patel and Pavlick trained a model with a textual
description of a grid world, e.g. taught the model to react
correctly to “left” and it generalized to the concept of
“right” without training

• Only works for larger models (e.g. GPT-3 vs. GPT-2)—this
is an emergent phenomenon with scale

On the other hand LLM knowledge is often “brittle”—
unpredictable errors and lack of robust generalization abilities

• Also really hard at this scale to detect clever hans predictors

• From Mitchell paper, clever hans example: “An LLM called BERT (30)
obtained near-human performance on this benchmark (31). It might
be concluded that BERT understands natural-language arguments
as humans do. However, one research group discovered that the
presence of certain words in the statements (e.g., “not”) can help
predict the correct answer. When researchers altered the dataset to
prevent these simple correlations, BERT’s performance dropped to
essentially random guessing (31). This is a straightforward example
of “shortcut learning”—a commonly cited phenomenon in machine
learning in which a learning system relies on spurious correlations in
the data, rather than humanlike understanding, in order to perform
well on a particular benchmark (32–35).”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10068812/

“Understanding” and emergence

https://hai.stanford.edu/news/examining-emergent-abilities-large-language-models

https://hai.stanford.edu/news/examining-emergent-abilities-large-language-models
https://hai.stanford.edu/news/examining-emergent-abilities-large-language-models

But some prompts can make ChatGPT and other
LLMs give weird responses!

https://www.vice.com/en/article/epzyva/ai-chatgpt-tokens-words-break-reddit

https://www.vice.com/en/article/epzyva/ai-chatgpt-tokens-words-break-reddit
https://www.vice.com/en/article/epzyva/ai-chatgpt-tokens-words-break-reddit

But some prompts can make ChatGPT and other
LLMs give weird responses!

https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation

https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation
https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation

https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation

https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation
https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation

Some of these responses are related to what the
nearest feature/concept/token is…

(…And sometimes
the training data is
weird, or there’s
superposition, so
the nearest
feature/concept/
token is also weird)

https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation

https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation
https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation

But some prompts can make ChatGPT and other
LLMs give weird responses!

• These examples are now fixed, but there are many more!

• Why? Some of it is weirdness in the training data: counting to
infinity subreddit for example

• But also has to do with how LLMs map and associate tokens/
features—and likely also to do with polysemanticity and
superposition

• Can we ever get rid of all of these? (e.g. with optimized/
curated/enough training data)

• Adversarial perturbations work suggests no

Memorization

• Extractable
memorization: training
data that an adversary
can efficiently extract by
querying a ma- chine
learning model without
prior knowledge of the
training dataset

https://arxiv.org/pdf/2311.17035.pdf

Neural networks and adversarial perturbations

• Adversarial perturbation: a small change that can be
added to an image or input data (usually imperceptibly to
humans) that causes the image or data to be
misclassified

• It has been shown that universal adversarial perturbations
exist—adversarial perturbations that will make most or all
images/inputs from a given network give the wrong
answer

• These can be generated for most neural networks

https://arxiv.org/pdf/1610.08401.pdf

https://arxiv.org/pdf/1610.08401.pdf
https://arxiv.org/pdf/1610.08401.pdf

https://arxiv.org/pdf/1610.08401.pdf

https://arxiv.org/pdf/1610.08401.pdf
https://arxiv.org/pdf/1610.08401.pdf

https://arxiv.org/pdf/1610.08401.pdf

https://arxiv.org/pdf/1610.08401.pdf
https://arxiv.org/pdf/1610.08401.pdf

Do LLMs “understand” things?

• Maybe? Depends what we mean by “understand”—
usually really asking if they have generalized

• They do seem to represent features/classifications/
concepts in some sort of abstract way, but is that the
same as “understanding” something?

• This question is the subject of a lot of debate! The way
that LLMs represent concepts have been suggested to be
similar to how the hippocampus in the brain represents
memories, but we are still a ways off from being able to
answer this

https://arxiv.org/abs/2112.04035 https://www.microsoft.com/en-us/research/publication/evaluating-cognitive-maps-in-large-language-models-with-cogeval-no-emergent-planning/

https://arxiv.org/abs/2112.04035
https://arxiv.org/abs/2112.04035
https://www.microsoft.com/en-us/research/publication/evaluating-cognitive-maps-in-large-language-models-with-cogeval-no-emergent-planning/
https://www.microsoft.com/en-us/research/publication/evaluating-cognitive-maps-in-large-language-models-with-cogeval-no-emergent-planning/

Do LLMs “understand” things?

• LLMs don’t have generalized logic in the way that we think
about it

• If you give them a prompt that isn’t something you would
commonly train on, but has a logical meaning, they often have
difficulty

• Although, how to interpret this? Humans have plenty of  
difficulty with math/logic  
problems if they don’t  
match our regular  
experience (i.e. training  
data) too!

https://arxiv.org/abs/2112.04035

https://arxiv.org/abs/2112.04035
https://arxiv.org/abs/2112.04035

• Need to be cautious about:

• Anecdotal evidence and cherry-picking (a lot of popular
news articles have this issue!)

• Contamination of training sets

• Lack of systematic evaluation—including multiple
tasks, control conditions, multiple iterations, and
statistical robustness tests

Do LLMs “understand” things?

Is human-generated input data still needed?

Recursive training and model collapse

• Training AI/ML models using data generated by models
tends to lead to model collapse—where the model
degenerates and becomes unable to represent the
original distribution of features in the data

• Rare features become lost and only the most common
features are maintained, leading to the model being
unable to solve problems/accomplish tasks

https://arxiv.org/pdf/2305.17493.pdf

https://arxiv.org/pdf/2305.17493.pdf
https://arxiv.org/pdf/2305.17493.pdf

