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Timeline

- Lab 4 & project proposal: due April 14

-+ Submit lab 4 on Canvas

- Upload project proposal to google drive (ADD LINK)
- Project proposal comments: April 21

- Comment on 2 other proposals

- Final Project writeup: Due April 30



Sayesian approaches to parameter estimation

Bayes’' Theorem, rewritten for inference problems:

P(p | z) = P(pamms | data) =

- Allows one to account for prior information about the
parameters

E.g. previous studies in a similar population

- Update parameter information based on new data



Sayesian approaches to parameter estimation

L Prior
L'ke"g distribution
/
P(z1p)-P(p)

P(p | z) = P(pamms | data) =

Normalizing constant
(can be difficult to calculate!)

P(z) = / P(z, p)dp



Denominator term - P(z)

- The denominator term:

P(z) = / Pz, p)dp

- Probabillity of seeing the data z from the model, over all
parameter space

- Often doesn’t have a closed form solution—evaluating
numerically can also be difficult

- E.g. If pis a three dimensional, then if we took 1000 grid
points in each direction, the grid representing the function
to be integrated has 1000° = 10 points



Maximum a posteriori (MAP) estimation

Instead of working with the full term, just use the

numerator:

he denominator is a constant, so the numerator Is
proportional to the posterior we are trying to estimate

- Then the p which yields max(P(z|p) - P(p)) is the same p
that maximizes P(p|z)

If we only need a point estimate, MAP gets around
needing to estimate P(z)



Sayesian

Parameter

—stimation

Can think of Bayesian estimation as a map, where we
update the prior to a new posterior based on data

P(p)—

X

P(z|p)

P(z)

Prior

Likelihood/P(z)

> P(p|z)
Posterior




Conjugate Priors

- For a likelihood distribution, there
family for our prior, which makes t
come from the same type of disttri

may be a distribution
ne posterior and prior

oution

- This Is called a conjugate prior for that likelihooo

- For example, a gamma distribution is the conjugate prior

for a Poisson likelihood.

P(z|p)

P(p) ——| X P(2)

Poisson

> P(pl|z)

Gamma




Why conjugate priors”

f we have a conjugate prior, we can calculate the
posterior directly from the likelihood and the prior—
nandles the issue with calculating the denominator P(z)

+ Also makes It easier to repeat Bayesian estimation—
making the posterior the prior and updating as new data
CcOmMes In

P(p)— | x PR, piy)

P(z)

Prior Posterior




Conjugate prior example: coin flip

- Let z be the data—1.e. the coin flip outcome, z =1 It it's
heads, z =0 If it's tails

- Let 6 be the probability the coin shows heads

- Likelihood: Bernoulll distribution

P(2]0) = 67 (1 — 9)1—=



Conjugate prior example: coin flip

- Conjugate prior: beta distribution

011 —0)P1

[ 9o=1(1 — §)B—1d0

P(0la, 5) =

- a and 3 are hyperparameters - shape parameters that
describe the distribution of the model parameters




How does the posterior work out to be a beta
distribution as well?

p(o} - PP Gla.S

. 1—» 904—1(1_9)B—1
0*(1 —0) [l 6o—1(1-6)8-1d0
P(z)

- 1—» 904—1(1_9)[3—1
0*(1 —0) [loa—1(1-6)8-1d8

[y P(z,6)d6

2 1—» 0% '(1-6)"1
0*(1—0) [l 6a—1(1-6)8-1d8

[ 6%(1 — 6)1==dp

Etc.—but you can see it will work out to be beta distributed



Coin flip example - Posterior

Beta distributed with posterior hyperparameters:
apost:a_l_z 5post:5+1_z

If we take multiple data points, this works out to be:

n

n
&post:a+§ <5 5}90875:5_'_77/_5 <5
1=1

1=1



Sampling methods: approximating a distribution

- What if we want priors that aren’t conjugate? Or what if
our likelihood is more complicated and it isn’t clear what
the conjugate prior is?

Now we need some way to get the posterior, even
though the denominator term is annoying

ow to approximate the distribution?



Markov Chain Monte Carlo (MCMC)

- Sampling-based methods—in particular, Markov chain
Monte Carlo (MCMC(C)

- Also used for many other things! Can approximate
distributions more generally —used in cryptography,
calculating neutron diffusion, all sorts of things



Markov Chain Monte Carlo (MCMC)

- MCMC is a method for sampling from a distribution
- Markov chain: a type of (discrete) Markov process

- Markov: memoryless, I.e. what happens at the next
step only depends on the current step

- Monte Carlo methods are a class of algorithms that
use sampling/randomness —often used to solve
deterministic problems (such as approximating an
integral)



Markov Chain Monte Carlo (MCMC)

- Main idea: make a Markov chain that converges to the
distribution we’re trying to sample from (the posterior)

- The Markov chain will have some transient dynamics
(lourn-in), and then reach an equilibrium distribution
which Is the one we're trying to approximate



Markov Chain Monte Carlo (MCMC)

- Many MCMC methods are based on random walks

-+ Set up walk to spend more time in higher probabllity
regions

- Jypically don’t need the actual distribution for this, just
something proportional—so we can get the relative
orobability density at two points

- S0 we don’t need to calculate P(z)! We can just use the
numerator



Example adapted from https://nicercode.github.io/guides/mcmc/

—Xample

- Suppose two parameters, with likelihood x prior:

paramelter 2

paramester 1
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—xample: Metropolis Algorithm

- |dea is to ‘walk’ randomly through parameter space,
spending more time in places that are higher probability —
that way, the overall distribution draws more from higher
probability spots

- Setup—we need

- A function f(p) proportional to the distribution we want
to sample, in our case f(p) = P(z|p) - P(p)

- A proposal distribution (how we choose the next point
from the current one) - more on this in a minute



Metropolis Algorithm

- Start at some point in parameter space
For each iteration

Propose a new random point prez+ 0ased on the
current point peurr (USING the proposal distribution)

- Calculate the acceptance ratio, o = f(Pnext)/ f (Peurr)
f o« > 1, the new point is as good or better—accept

If « < 1, accept with probabillity o



What does the metropolis algorithm do”

f«posterior

start



What does the metropolis algorithm do”

f«posterior

proposal
distriution
~ N Accept

pnext pcurr D



What does the metropolis algorithm do”
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What does the metropolis algorithm do”

f«posterior

—Maybe accept with probabilitr a
}0>o

l

ocurr pnext D



What does the metropolis algorithm do”

— Maylbe accept with probability a

f«posterior

je>e

pnext  pcurr D



What does the metropolis algorithm do”

f«posterior

pcurr



What does the metropolis algorithm do”

f«posterior

OCUIT



What does the metropolis algorithm do”

f«posterior

pCUrT



What does the metropolis algorithm do”

f«posterior

pcurr



Why does this recover the posterior distribution?
Key Is the acceptance ratio o

We want the amount
of time spent here\{

To be ~twice the amount
of time spent here

-~

Acceptance ratio = ratio of heights

posterior



Why does this recover the posterior distribution?

- The acceptance ratio a = f(pnext)/ f (Peurr)

-+ Note it is equal 10 P(pnext|2)/ P(Peurr|2) Since the
denominators cancel

+ Suppose we're at the peak

+f f(pecurr) = 2 f(prext), then a = 1/2, i.e. we accept with
1/2 probability

- Overall, will mean the number of samples we take from a
region will be proportional to the height of the distribution



Proposal Distribution

- A distribution that lets us choose our next point randomly
from our current one

For Metropolis algorithm, must be symmetric

- Common to choose a normal distribution centered on
current point

-+ Width (SD) of normal = proposal width

- Choice of proposal width can strongly affect how the
Markov chain behaves, how well it converges, mixes, etc.



—Xample

Model: normal distribution N (i, o)

- Suppose o is known, u to be estimated

. . . | B | B 1 _L’.—:)z _ - .
Likellhood: P@ilp 1) =f(zilp,1) = = P(zlﬂ)—zl}f(zllu,l)
Prior: u ~ N (0, 3) \\

- Suppose we have 20 data points



mu

—xample - proposal width: SD
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Goldilocks problem:
What happens if we change the proposal width®
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—xample: prior, likelihood, and posterior (all scaled)

2.0~
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2>
n
S E Likelihood
- 1.0
E E Prior
§ E Sampled Posterior
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Assessing convergence

MCMC methods will let us sample the posterior once
they've converged to their equilibrium distribution

How to know once we’ve reached equilibrium?
- Visual evaluation of burn-in
- Autocorrelation of elements in chain k iterations apart

- Also approaches to use in combination with/instead of
burn-in: start with MAP estimation, multiple chains, etc.



Assessing convergence

- Often done visually

- Although, this can be misleading:

0.07r

| Chain shifts after 130,000
iterations due to a local min
IN sum of squares

¥ (Example from R. Smith,

| Uncertainty Quantification)
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Metropolis & Metropolis-Hastings Caveats

- Assessing convergence —how long is burn-in"

- What about when you have unidentifiability or multiple
minima?

- Correlated samples

- How to choose a proposal width”? (~size of next jump)



Wide range of methods

-+ Metropolis—Hastings
+ Gibbs sampling

- Variations of the above: prior optimization, multi-start,
adaptive methods, delayed rejection

- DRAM (Delayed Rejection Adaptive Metropolis-
Hastings)

- Many more!



—Xamples

° Amezrican Journa of Epidemiology Vol. 186, No. 12
/ { %: DThe Author(s) 2017, Publishcd by Oxford University Press on benat of the Johns Fogkins 2loomberg Schoo of DOI: 10.1093/aje/kwx217
L/ Public ~ealth. All igh's reserved. For permissions, please e-mall: journals.parmissions @oup.ccm. Advance Access publ cation:
June 9, 2017

Practice of Epidemiology

Application of an Individual-Based Transmission Hazard Model for Estimation
of Influenza Vaccine Effectiveness in a Household Cohort

Joshua G. Petrie*, Marisa C. Eisenberg, Sophia Ng, Ryan E. Malosh, Kyu Han Lee, Suzanne
E. Ohmit, and Arnold S. Monto
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Table 2. Observed and Individual-Based Transmission Hazard Model-Pradicted Influenza A(H3N2) Infections According to Infection Source,
Age, Presence of High-Risk Heallh Condilion, and Influenza Vaccination Stalus, Household Influenza Vaccine Effecliveness Study, Ann Arbor,
Michigan, 2010-2011

Observed Data TH Model Predictions
Characteristic No.of Cases Total No. Exposed % Median No. of 05% % SE% rh p
(n=158) (n=1,441) Positive Cases Crl Positive value®

Community-acquired 41 1,441 2.8 43 31,55 30 2238 0.70
Household-acquired 17 111 18.3 18 9,30 13.2 6.6,20.5

Secondary N/O N/O 16 7,24

Tertiary N/O N/O 3 0,9

Quaternary N/O N/O 0 0,0
Age category, years 0.80

<9 32 468 6.8 36 22,50 7.7 47,107

9-17 8 371 2.2 8 3,14 22 0838

>18 18 602 3.0 18 9,27 3.0 1545
Documented high-risk health 043

condition

Any 6 162 3.7 5 1,11 3.1 06,6.8

None 52 1,279 1.1 56 38,76 44 30,59
Documented influenza vaccination® 0.45

Yes 33 864 3.8 32 19,48 3.7 225.6

No 25 577 4.3 29 16, 44 50 28,7.6
Overall model predictions 62 42,82 43 29058.7

Abbreviations: Crl, credible interval; N/O, not observed; TH, transmission hazard.

2 Simulation-based y° test.

© At least 1 dose of 2010-201 1 influenza vaccina documanted in the electronic medical record or state ragistry; vaccination must have occurred
>14 days prior to iliness onset forinfluenza A(H3N2) infected subjects.
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Sample Importance Resampling and
Approximate Bayesian Computation

- MCMC can be slow—another approach to getting a
rough sample of parameter space that matches the data
is Sample Importance Resampling

- Can be used with the true likelinood

- Or with an approximating function (approximate
Bayesian computation)

- E.g. may take a threshold based on distance
between the model and observed data



83asic Idea

- Draw a sample of parameters from your prior (either
drawing at random or with LHS/sobol/etc. sampling)

- Run the model for each sample

- Calculate the likelihood value (or approximation of it) for
each sample

- Weight the samples based on the likelihood

- Resample to get the final set of samples



Prior distribution of

Observational datf' model parameter 0

M
- - (21 Given a certain model,
s Compute summery sttt o /ol o perform 0 simulatons, each
H AR KSRkl i 1 2 i with a parameter drawn from
the prier distribution
Simulation 1 Simulation 2 Simulation 3 Simulation n
3 Compute summary t f =
statistic pi.for each L. M., .,
simulation
7
p(u,H) <€ ) 4 v’ ) ¢ v’
‘41 Based on a distance p(- ) ‘
and a folerance , decide for ,,//
each simulation whether its e
summary statistic is sufficiently
close to that of the observed Posterior distribution of > Approximate the pasterior
0ata. model parameter 8 distribution of 8 from the distribution
' ' ' of parameter values 6, associated
with accepled simulations.

https://en.wikipedia.org/wiki/Approximate_Bayesian_computation



—xample: Norovirus model
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Havumaki et al. 2020



Attack Rate

Resampled Daycare Attack Rates vs. Outbreak Durations
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Readings

- Menzies NA, Soeteman DI, Pandya A, Kim JJ. Bayesian
methods for calibrating health policy models: a tutorial.
PharmacokEconomics. 2017 Jun 1;35(6):613-24.




