Agent based models: spatial environments

CSCS 530 - Marisa Eisenberg



Types of ABM environments

- Non-spatial (or at least, not explicitly spatial)

- Network topologies (may be thought of as spatial or not)
- E.g. subway networks vs. contact networks

- Explicitly spatial environments
- Grids
- 2D or 3D space

- Mapping - have agents move through a real-world-based
environment



Grids

- \We have seen several examples of this (cellular automata,
the Shelling model, forest fire model, etc.)

- A classic example along these lines that uses the
environment in an active way is Sugarscape
(slides mostly borrowed from Lynette Shaw)



Sugarscape Model

- Classic, very well-known model of wealth distribution
developed in the mid-1990s

- Presented by Joshua Epstein and Robert Axtell in their
classic book, Growing Artificial Societies

- Begins with a very simple model then explores an
extremely wide-range of substantively interesting
variations

- Many more variations have been developed since



Classic Sugarscape: Environment

+ Agents exist on a square-lattice known as “Sugarscape” w/
individual lattice positions that generate a generic resource

called “sugar”
- Patch variables

» Current sugar level, max sugar capacity

- Patch methods

Patches regenerate sugar according to some function

Gapha Where alpha = units of sugar grown back in one time
step, up to max capacity



Classic Sugarscape: Agents

- Agent variables
Position: X,y coordinates on the Sugarscape

+ Sugar level: how much sugar agent currently has (no
limit)

Metabolism (m): how many units of sugar it “burns” per
time step

- Vision (v): how many lattice positions away an agent
can “look” for sugar



Classic Sugarscape: Agent actions

- Movement (M):

1. Look out v number of positions in NWSE directions
(no diagonall)

2. Move to nearest, unoccupied position w/the most
sugar

3. Collect all sugar on that position



Classic Sugarscape: Agent actions

Metabolize:
1. Decrement sugar level by m units

2. It current sugar level < O, die



Baseline model for Sugarscape

Baseline Model:
Random initialization of agents for v, m, and initial sugar level
Set alpha = infinity

Animation II-1. Societal Evolution under Rules ({G_}, {M}) from a
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Baseline model for Sugarscape

- Baseline Model:

- Random initialization of agents for v, m, and initial sugar level

-+ Set alpha = 1
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Wealth

Distributions In Sugarscape

- In baseline model, no replacement for agents that die.

Living

agents accumulate sugar indefinitely —> no

stationary wealth distribution

- Variant: Add Replacement Rule

- Eac

N agent gets a max achievable age drawn from

[a,b.

. Die after that age (or before if sugar < 0)

- When agent dies, replace w/a randomly initialized
(including position) agent



—mergence of a skewed wealth distribution

Animation II-3. Wealth Histogram Evolution under Rules ({G,}, {M,
R 40,100;}) from a Random Initial Distribution of Agents
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—mergence of inequality
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Demonstrates how empirically reminiscent patterns of inequality
can emerge from a set of simple rules + environmental and actor
heterogeneity



Migration variations

- Alter initial random distribution of agents to add more
“structure” in starting position

+ Seasonal Migration

Introduce spatial and temporal patterning in alpha by
creating an “equator” in space and “seasons” of
higher-lower alphas in the two regions

Note: only environmental changes. No changes to
movement/agent rules



Migration
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- Diagonal pattern of movement




Seasonal Migrations

Migration + emergence of “hibernators” and “migrators”




The World of Sugarscape Elaborations

- Though the baseline model is extremely simple, a wide number of
elaborations and variations have been developed to explore a host of
other issues
- Social networks
- Sexual reproduction
- Cultural change
- War and conflict

- Inheritance and wealth

- Disease



Sugar and Spice: a Market Dynamics Elaboration

- This elaboration begins with the introduction of a second
resource to the environment, “spice”

- Agents now have both a sugar level and a spice level
with a corresponding m for each. Die If either level < O

- Movement now changes to e driven by a “Welfare” (W)
function



Sugar and Spice: Agent Welfare Function

My =M, + m,,
W(WIFWE) = Wf’hf}'ﬂ]-wzmzjmrr
Movement Rule Change:

Replace “unoccupied position with maximum sugar level”
with “unoccupied position maximum welfare increase”



Sugar and Spice: No Trade

- Oscillating movements between Sugar and Spice piles

- Lower carrying capacity than 1 commodity scenario



Sugar and Spice: Trade Rules

With 2 commodities, can now allow for decentralized
trade between agents

A
Marginal Rate of Substitution (MRS) 3*
m,
MRS > MRSy MRS, < MRSy
Action A B A B
Buys sugar spice spice sugar

Sells spice sugar sugar spice




Sugarscape

Agent trade rule T:

Agent and neighbor compute their MRSs; if these are equal
then end, else continue;

The direction of exchange is as follows: spice flows from the
agent with the higher MRS to the agent with the lower MRS
while sugar goes in the opposite direction;

The geometric mean of the two MRSs is calculated—this will
serve as the price, p;

The quantities to be exchanged are as follows: if p > 1 then
p units of spice for 1 unit of sugar; if p < 1 then 1/p units ot
sugar for 1 unit of spice;

If this trade will (a) make both agents better off (increases the
wellare of both agents), and (b) not cause the agents” MRSs to
cross over one another, then the trade is made and return to
start, else end.



Sugarscape

Local Pareto Optimality

Can show that these rules for exchange and price
formation, played out multiple times in a bargaining dyad,
achieves a local Pareto optimum

Figure IV-2. Edgeworth Box Representation of Two Agents Trading
according to Rule T
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Sugarscape

- Decentralized trading can lead to a stable, average trade
orice w/o the need for a central “auctioneer”

+Also, Increases carrying capacity of system

Figure IV-3. Typical Time Series for Average Trade Price under Rule Figure IV-5. Typical Time Series for the Standard Deviation in g
System ({G,}, {M, T}) Logarithm of Average Trade Price under Rule System (G}, (M, T})
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Sugarscape extensions

- Horizontal inequality
- Abllity to get into “Far From Equilibrium Economics”™
- Price variance strongly impacted by agent vision

- Local efficiency, Global inefficiency



2D or 3D space

- 2D space

- Abstract 2D spaces with arbitrary setups but not on an

explicit grid (e.g. movement is decided based on a
distribution not on a grid)

+Imaging data (e.g. MRI, microscopy imaging)
- Map data
- 3D space

- Often used for flocking simulations (e.g. Boids)

- Also for modeling complex biological or physical domains
(e.g. cellular environments, etc.)



Abstract 2D & 3D space

- We have worked with several examples of this in 2D
space (e.g. ants, rabbits/foxes)

- Complex environments can lbe generated



Example: hybrid model of
breast cancer dynamics

- Transformation from
normal ducts to solid
tumor In breast cancer
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Cells as agents within the duct

@ Epithelialcell @ TEC
0 Fibroblast B Myo—fibroblast

f, (0))

Kim & Friedman - https://www.ncbi.nim.nih.gov/pubmed/23292359



(A) 75 cells; t=5.6 day (B) 100 cells; t=5.6 day
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Population

(A) t=0.0 day
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Off-lattice
IBCell

On-lattice
Cellular Potts
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Rejniak & Anderson - https://www.ncbi.nim.nih.gov/pmc/articles/PMC3057876/
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Imaging data

Diagnosis Death

e

Exists at many scales—
landscapes to cells

Often requires some image
processing to identify regions
with key features for the agents
to interact with

We’ve seen another example of
this in the model of the
Ancestral Puebloan communities
that we looked at previously

Swanson et al. 2003 Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion



Mapping data

- Often used for modeling commuting patterns, disease
spread, social dynamics, etc.

- Modeling with mapping is similar to other ABM with
space, just using the map to determine where features
are

- Example: FRED synthetic population model

- https://fred.publichealth.pitt.edu/measles



