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How to generate networks®

* Real world networks (static or dynamic)—Iots of
network data out there

* Random networks!
* Many of these can be used either as
* static networks to run dynamics on, or

* models of dynamics of networks



Random Networks

* Why would you want to do this”

e Often want to simulate network formation or
simulate dynamics on networks

* May not know exact network

* But often do know some general features of the
network (e.g. degree distribution)

e So: simulate random networks with those features



Erdos-Renyl Networks

 Erdos—Renyi (also Gilbert) Network - two forms:

* G(n,p)- network on n nodes with each edge
having probability p of existing

* G(n,M) - network on n nodes with M edges
chosen randomly

* Often called a “random graph” even though all
of the networks here are also random
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Erdos-Renyl Networks

* Not so realistic for lots of things (e.g. social
networks, many gene/protein/biological networks)

* But, often handy as a test case/comparison point
(e.q. If evaluating whether a mean-field model is a
reasonable approximation)

* Usetul for making analogs of homogeneous mixing
(e.g. from SIR or compartmental models)



Erdos-Renyl Networks

* Let you sample from the full space of possible
graphs with minimal assumptions

* |f a property of a network is reproduced by ER, may
suggest it's not a special teature of the network
driving it—alternatively if ER does not reproduce
this property, it may be more “interesting”



Erdos-Renyl Networks

* Lots of mathematical theory for random matrices
(e.g. useful for examining adjacency matrices) and
random graphs, particularly for Erdds-Renyi
graphs, e.g.

* Degree distribution, giant component, etc.



Milgram’'s small World

EXperiment

* Sent packages to random people in Wichita,
Kansas

* |etter inside asked them to forward to a target
person in Sharon, Massachusetts

* Jold they could mail the letter directly
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Milgram’'s small World
EXperiment

* Many letters didn't make it, but among those that
did, average path length was 6

* “Six degrees of separation”

* How to generate a small world network®



Small World Networks

* Regular graphs: clustered, but path length L grows
linearly with number of nodes n

* Erdds-Reényi graphs: not clustered but small path
length (grows as /log n)

e \Want to combine both



Newman-Watts-Strogatz
Algorithm

0<P<<«1

RegAuIar Small-World Random
(a) (b) (c)



Small World Networks

Most nodes are not neighbors of one another, but
most nodes can be reached from every other by a
small number of hops or steps

Average distance L between two

nodes Is proportional to /log n
(where nis the number of nodes)




Small World Network

e Creates the “what a small world!” effect: two nodes
will tend to have a mutual friend (adjacent node)

* Can be similar to scale free in that can produce
hubs as well as sparsely connected individuals

e Network can be both small-world and scale-free

* However, N-W-S tends to produce more similar
degrees for nodes rather than scale free



Preferential Attachment
Networks

* Barabasi-Albert algorithm

e Add new nodes to the network

sequentially, preferentially
connecting them to

high-degree nodes

| deg ()
pli) = =
Zj eg(J)

e (Generates scale free
networks



Preferential Attachment

* “Rich get richer” (Matthew effect) dynamics make
hubs

* Can also implement as a growth process from an
existing network



Configuration Models

Given a degree seguence, generate random
network with that sequence

Random graphs, but with the advantage that the
degree sequence can be chosen realistically

Algorithm: generate ‘stubs’ with the correct degree,
then connect pairs of stubs

~ 1 - ~—e
V1=



Configuration Models

* Provides a way to generate random networks
consistent with a real-world degree sequence/
distribution

e Often have non-network data that tells us about
degree (egocentric data)

* Or may want to explore the space of graphs that
are ‘similar’ to a known network



Dynamics on Networks

* Dynamics on nodes and/or edges”?
e \What variables to consider?
e Discrete vs. continuous variables

e Deterministic vs. stochastic



Dynamics on Networks

* How to update”
e Discrete vs. continuous time

* Synchronous, asynchronous, continuous



Dynamics on Networks

 Discrete variable, discrete time—similar to CA! Just
a different set of neighbors

* Implementation is very similar

 CA models are network models! Using a regular
graph with a lattice structure with degree 4 or 8



Example: infectious
transmission on a network

* |nfectious diseases, information/idea/culture
propagation, behavioral dynamics (e.g.
transmission of alcohol use behaviors)

* Nodes may be individuals, or they can be
communities

* Edges indicate contact between individuals or
communities, or potentially movement between
communities




Example: infectious
transmission on a network

 Each node may be assigned a status (susceptible/
infectious/recovered)

* Or a vector/number (number of infected in that
node, numbers of S/I/R in that node)

* £E.g. run an SIR model in each node but allow
transmission within-node or between-node



INndividual-level network models
of disease transmission

(c) From the book Networks, Crowds, and Markets: Reasoning about a Ilighly Connected Weorld.
By David Easley and Jon Kleinberg, Cambridge TTniversity Press, 2010.
Complcte preprint on-line at hrtp://www.cs.cornell.edu/home/ kleinber /netviorks-book/



INndividual-level network models
of disease transmission

* Virus on a network example in NetLogo models
ibrary

« PyCX has several examples

* Let's code one together!



Population level network
model of disease transmission

* Can model population transmission on a network
as an agent-based model or non-agent based
model (e.g. ODE, stochastic model)



EVD in West Africa

STAGES OF EBOLA VIRUS DISEASE contagious tarough bodily fluids = il

SOURCE: CDC
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D’Silva JP, Eisenberg MC. Modeling spatial invasion of Ebola in West Africa. Journal of theoretical biology. 2017 Sep 7;428:65-75.



Model Equations
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Reporting Rate &
Fraction of the Population at Risk

Fraction of individuals . .
Population Reporting
who have become X , X
. at risk rate
infected

= Observed cases



Reporting Rate &
Fraction of the Population at Risk

Model "

Fraction of individuals /\/L/\
Population y Reporting

who have become X .
, at risk rate
infected

= Observed cases
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D’Silva JP, Eisenberg MC. Modeling spatial invasion of Ebola in West Africa. Journal of theoretical biology. 2017 Sep 7;428:65-75.



Gravity Model

e Model of transmission or movement between
locations

* Suppose that contact is higher with regions that are
larger (population centers), and regions that are

closer

* Scale transmission or movement using ‘gravity’

ferm: N;N;
)
iJ
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D’Silva JP, Eisenberg MC. Modeling spatial invasion of Ebola in West Africa. Journal of theoretical biology. 2017 Sep 7;428:65-75.



Parameter Estimation

* Estimate parameters from incidence data on cases
and deaths

* Some parameter information from the literature and
from ongoing reporting of incubation period,
infectious period, etc.

* Extensive uncertainty and issues of unidentifiability!

 Many ditferent parameter values will fit the data
equally (or close to equally) well
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More granular: modeling at
the district level

 Extend the model to the 63 districts in Guinea,
Liberia, and Sierra Leone

* Adapt the model to be stochastic (since some
districts have small population)
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Cases and Deaths: Model Results vs Data

O Cases
X Deaths

1072 10° 102 10*
Model Results

D’Silva JP, Eisenberg MC. Modeling spatial invasion of Ebola in West Africa. Journal of theoretical biology. 2017 Sep 7;428:65-75.
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Epidemic Dynamics
on Networks

* Network structure plays a huge role on the
epidemic dynamics

* Hubs, sparsely connected, etc.

 Small world property can tend to produce
synchronized epidemics (e.g. oscillations)



Epidemic Dynamics
on Networks

* Where you place high-risk individuals or patches
can significantly affect Ro, disease dynamics, etc.

* E.Q. If cluster high-risk nodes together vs spread
apart

* |f hub vs periphery is infected - the scale free
vulnerability to hub attacks



Epidemic Dynamics
on Networks

* How would interventions/risk/dynamics differ for
epidemic spread by roads vs air travel”? (and what
does this mean for pandemics & emerging
diseases/behaviors)

Random Network Scale-Free Network




Epidemic Dynamics
on Networks

* Major & still very open area of research

* Can have significant impact on interventions &
control strategies

* Should you target well-connected individuals?

* Are there specific network structures you should
look for as high-risk?



Epidemic Dynamics
on Networks

* |ots of interesting data to work with too—can often
track contacts, etc.

* Example: the
eX-FLU study
(Aiello et al.)

* Substudy tracking
contacts using
Bluetooth from
cell phones

, Rainey JJ, Uzicanin A, Gao H, Osgood N. Design and methods of a social network isolation study for reducing

Aiello AE, Simanek AM, Eisenberg MC, Walsh AR, Dav Volz E, Che y
rial. Epidemics. 2016 Jun 1;15:38-55.

is B, Volz
respiratory infection transmission: The eX-FLU cluster randomized



Example: power grids

-=380 kV
~—Transformer
—220 kV

SMART-DS: Synthetic Models for Advanced, Realistic Testing: Distribution
Systems and Scenarios By Paul Cuffe - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/

https://www.nrel.gov/grid/smart-ds.html index.php?curid=70226122



Example: Neuronal networks

* Firing dynamics on
networks used extensively
in mathematical/
computational
neuroscience

 Example: ring model of
direction sense!

* Proposed as a model in
the 1990’s

Figure 3: Architecture of the head direction cell model.

Skaggs, WE., et al. "A model of the neural basis of the rat's sense of direction."
Advances in neural information processing systems. 1995.
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Kim, Sung Soo, et al. "Ring attractor dynamics in the Drosophila central brain." Science 356.6340 (2017): 849-853.



2017: Found the ring network
N Drosophila (fruit fly)!

Kim, Sung Soo, et al. "Ring attractor dynamics in the Drosophila central brain." Science 356.6340 (2017): 849-853.
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Example: information
errymandering
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Stewart, Alexander J., et al. "Information gerrymandering and undemocratic decisions." Nature 573.7772 (2019): 117-121.



Electoral Gerrymandering

Consider 24 people, 12 favoring the Purple party
and 12 favoring the Yellow party

Stewart, Alexander J., et al. "Information gerrymandering and undemocratic decisions." Nature 573.7772 (2019): 117-121.



Network influence
assortment

Intermediate assortment

Complete assortment Asymmetric assortment

Stewart, Alexander J., et al. "Information gerrymandering and undemocratic decisions." Nature 573.7772 (2019): 117-121.



EXperimental data
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Stewart, Alexander J., et al. "Information gerrymandering and undemocratic decisions." Nature 573.7772 (2019): 117-121.



Examples

Percolation on a network
Diffusion on a network (movement, etc.)

Regulatory relationships in cells (levels of gene activity,
protein concentrations, etc.)

Ecological relationships (species populations)

Coupled oscillators (e.qg. fireflies etc)

e https://ncase.meffiretlies/
« PyCX example code



https://ncase.me/fireflies/

Dynamics of networks

* Things to consider
* How do we add/remove nodes?
* How do we add/remove edges?

* Dynamics of networks can often be framed as
dynamics on networks where we activate/inactivate

nodes/edges in a super-network

* E.g. sexual network partnerships



Dynamics of networks

* Often depends on the gquestion at hand—often the

rules tor changing network structure are often question
and system specitfic

« Random graph generators from last time can also be
thought of as dynamics of networks

* Erdos-Renyi
e Small world

e Preferential attachment



Dynamics of networks

* Dynamic empirical networks - contact networks,
travel networks, ecological networks, trade
networks, social media networks, etc.



12:00

Aiello AE, Simanek AM, Eisenberg MC, Walsh AR, Davis B, Volz E, Cheng C, Rainey JJ, Uzicanin A, Gao H, Osgood N. Design and methods of a social network isolation study for reducing

2:00

4:00

respiratory infection transmission: The eX-FLU cluster randomized trial. Epidemics. 2016 Jun 1:15:38-55.

6:00

14.00
AP
| '
b
22:00
o



Examples

Evolution of gene regulatory and metabolic networks
Self organization, adaptation of food webs

Social network formation and change, growth of
collaboration and citation networks

Global economic relationships, trade, diplomacy, etc.

Growth of infrastructure networks (power grids, sanitation,
traffic, railways, internet)

Many of these are potentially adaptive networks



. ) = | I20°%

Class | Railroads of N‘orth America

Rail network Internet fiber cable network

https://en.wikipedia.org/wiki/ https://www.technologyreview.com/s/540721/first-detailed-public-
Rail_transportation_in_the_United_States map-of-us-internet-backbone-could-make-it-stronger/



For next time...

* Reading
 Sayama Chapter 16

* Think Complexity Chapters 4 & 5



