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Bayesian approaches to parameter estimation

• Bayes’ Theorem, rewritten for inference problems:  

• Allows one to account for prior information about the 
parameters 

• E.g. previous studies in a similar population 

• Update parameter information based on new data

P p | z( ) = P params | data( ) = P z | p( ) ⋅P p( )
P z( )



Bayesian approaches to parameter estimation

P p | z( ) = P params | data( ) = P z | p( ) ⋅P p( )
P z( )

Likelihood Prior 
distribution

Normalizing constant 
(can be difficult to calculate!)

P (z) =

Z

p
P (z, p)dp



Bayesian probability for babies!





What is the likelihood? 
L(NC cookie | NC bite) = P(NC bite | NC cookie)



What is the likelihood? 
L(C cookie | NC bite) = P(NC bite | C cookie)



What is the maximum likelihood estimate?

Maximum likelihood:



What about the prior distribution of cookies?



Our data (likelihood) tells us we have a no-candy 
bite—how many of the  bites are no candy?



1/3 of the candy cookie bites have no candy, but 
there are a lot more of them

Prior x Likelihood ~ Posterior 
9 x 1/3 = 3 candy cookies, vs. 1 x 1 = 1 no-candy cookie



Bayesian estimation!
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Denominator term - P(z)

• The denominator term: 

• Probability of seeing the data z from the model, over all 
parameter space 

• Often doesn’t have a closed form solution—evaluating 
numerically can also be difficult 

• E.g. if p is a three dimensional, then if we took 1000 grid 
points in each direction, the grid representing the function 
to be integrated has 10003 = 109 points

P (z) =

Z

p
P (z, p)dp



Maximum a posteriori (MAP) estimation

• Instead of working with the full term, just use the 
numerator: 

• The denominator is a constant, so the numerator is 
proportional to the posterior we are trying to estimate 

• Then the p which yields max(                     ) is the same p 
that maximizes  

• If we only need a point estimate, MAP gets around 
needing to estimate 

P (p|z) = P (z|p) · P (p)

P (z)

P (z|p) · P (p)
P (p|z)

P (z)



Bayesian Parameter Estimation

• Can think of Bayesian estimation as a map, where we 
update the prior to a new posterior based on data

P (p) ⇥P (z|p)
P (z)

P (p|z)
Prior

Likelihood/P(z)
Posterior



Conjugate Priors

• For a likelihood distribution, there may be a distribution 
family for our prior, which makes the posterior and prior 
come from the same type of distribution 

• This is called a conjugate prior for that likelihood 

• For example, a gamma distribution is the conjugate prior 
for a Poisson likelihood.

P (p) ⇥P (z|p)
P (z)

P (p|z)
Gamma

Poisson
Gamma



Why conjugate priors?

• If we have a conjugate prior, we can calculate the 
posterior directly from the likelihood and the prior—
handles the issue with calculating the denominator P(z) 

• Also makes it easier to repeat Bayesian estimation—
making the posterior the prior and updating as new data 
comes in

P (p) ⇥P (z|p)
P (z)

P (p|z)
Prior

Bayes
Posterior



Conjugate prior example: coin flip

• Let z be the data—i.e. the coin flip outcome, z = 1 if it’s 
heads, z = 0 if it’s tails 

• Let θ be the probability the coin shows heads 

• Likelihood: Bernoulli distribution

P (z|✓) = ✓z(1� ✓)1�z



Conjugate prior example: coin flip

• Conjugate prior: beta distribution 

• α and β are hyperparameters - shape parameters that 
describe the distribution of the model parameters

P (✓|↵,�) = ✓↵�1(1� ✓)��1

R 1
0 ✓↵�1(1� ✓)��1d✓

Whoa



How does the posterior work out to be a beta 
distribution as well?

P (✓|z) = P (z|✓)P (✓|↵,�)
P (z)

=
✓z(1� ✓)1�z ✓↵�1(1�✓)��1

R 1
0 ✓↵�1(1�✓)��1d✓

P (z)

=
✓z(1� ✓)1�z ✓↵�1(1�✓)��1

R 1
0 ✓↵�1(1�✓)��1d✓

R 1
0 P (z, ✓)d✓

=
✓z(1� ✓)1�z ✓↵�1(1�✓)��1

R 1
0 ✓↵�1(1�✓)��1d✓

R 1
0 ✓z(1� ✓)1�zd✓

Etc.—but you can see it will work out to be beta distributed



Coin flip example - Posterior

• Beta distributed with posterior hyperparameters: 

• If we take multiple data points, this works out to be:

↵post = ↵+ z �post = � + 1� z

�post = � + n�
nX

i=1

zi↵post = ↵+
nX

i=1

zi



Sampling methods: approximating a distribution

• What if we want priors that aren’t conjugate? Or what if 
our likelihood is more complicated and it isn’t clear what 
the conjugate prior is? 

• Now we need some way to get the posterior, even 
though the denominator term is annoying 

• How to approximate the distribution?



Markov Chain Monte Carlo (MCMC)

• Sampling-based methods—in particular, Markov chain 
Monte Carlo (MCMC) 

• Also used for many other things! Can approximate 
distributions more generally—used in cryptography, 
calculating neutron diffusion, all sorts of things



Markov Chain Monte Carlo (MCMC)

• MCMC is a method for sampling from a distribution 

• Markov chain: a type of (discrete) Markov process 

• Markov: memoryless, i.e. what happens at the next 
step only depends on the current step 

• Monte Carlo methods are a class of algorithms that 
use sampling/randomness—often used to solve 
deterministic problems (such as approximating an 
integral)



Markov Chain Monte Carlo (MCMC)

• Main idea: make a Markov chain that converges to the 
distribution we’re trying to sample from—in this case, the 
posterior distribtuion! 

• The Markov chain will have some transient dynamics 
(burn-in), and then reach an equilibrium distribution 
which is the one we’re trying to approximate



Markov Chain Monte Carlo (MCMC)

• Many MCMC methods are based on random walks 

• Set up walk to spend more time in higher probability 
regions 

• Typically don’t need the actual distribution for this, just 
something proportional—so we can get the relative 
probability density at two points 

• So we don’t need to calculate P(z)! We can just use the 
numerator



Example

• Suppose two parameters, with likelihood x prior:

Example adapted from https://nicercode.github.io/guides/mcmc/



Sample path
We start our parameter values at a random guess 
The random walk the MCMC traverses is shown as 
the grey line 



Sample path



Sample path
Over time, the random walk accrues samples of the posterior 
distribution, proportional to the probability of those values. In other 
words, we get more samples from higher probability regions



Sampled density

Can also get marginals:

Eventually, the sampled values recreate the posterior 
distribution! And we didn’t need the denominator term, 
only the numerator term, so these are relatively easy to 
calculate



Example: Metropolis Algorithm

• Idea is to ‘walk’ randomly through parameter space, 
spending more time in places that are higher probability—
that way, the overall distribution draws more from higher 
probability spots 

• Setup—we need 

• A function        proportional to the distribution we want 
to sample, in our case  

• A proposal distribution (how we choose the next point 
from the current one) - more on this in a minute

f(p) = P (z|p) · P (p)
f(p)



Metropolis Algorithm

• Start at some point in parameter space 

• For each iteration 

• Propose a new random point          based on the 
current point         (using the proposal distribution) 

• Calculate the acceptance ratio, 

• If          , the new point is as good or better—accept 

• If          , accept with probability

↵ = f(pnext)/f(pcurr)

pnext
pcurr

↵ � 1

↵ < 1 ↵



What does the metropolis algorithm do?

pstart
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What does the metropolis algorithm do?
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Why does this recover the posterior distribution? 
Key is the acceptance ratio 

p

po
st

er
io

r

We want the amount  
of time spent here 

To be ~twice the amount  
of time spent here

↵

Acceptance ratio = ratio of heights



Why does this recover the posterior distribution?

• The acceptance ratio 

• Note it is equal to                                    since the 
denominators cancel 

• Suppose we’re at the peak 

• If f(pcurr) = 2 f(pnext), then              , i.e. we accept with 
1/2 probability 

• Overall, will mean the number of samples we take from a 
region will be proportional to the height of the distribution 

↵ = f(pnext)/f(pcurr)

↵ = 1/2

P (pnext|z)/P (pcurr|z)



Proposal Distribution

• A distribution that lets us choose our next point randomly 
from our current one 

• For Metropolis algorithm, must be symmetric 

• Common to choose a normal distribution centered on 
current point 

• Width (SD) of normal = proposal width 

• Choice of proposal width can strongly affect how the 
Markov chain behaves, how well it converges, mixes, etc.



Example

• Model: normal distribution 

• Suppose    is known,    to be estimated 

• Likelihood: 

• Prior:  

• Suppose we have 20 data points

N (µ,�)

µ�

µ ⇠ N (0, 3)



Example - proposal width: SD = 0.5



Goldilocks problem: 
What happens if we change the proposal width?

proposal SD = 0.05 proposal SD = 2



Example: prior, likelihood, and posterior (all scaled)



MCMC

• MCMC improves many of the problems that other 
optimization methods face (getting trapped in local 
minima, etc.) 

• However, those issues can still cause problems for 
MCMC too 

• How to know when you’ve run the MCMC long enough 
and collected enough samples to reflect the distribution? 

• How to know if you have explored the space sufficiently?



Assessing convergence

• MCMC methods will let us sample the posterior once 
they’ve converged to their equilibrium distribution 

• How to know once we’ve reached equilibrium? 

• Visual evaluation of burn-in 

• Autocorrelation of elements in chain k iterations apart 

• Also approaches to use in combination with/instead of 
burn-in: start with MAP estimation, multiple chains, etc.



Assessing convergence

• Often done visually 

• Although, this can be misleading:

Chain shifts after 130,000  
iterations due to a local min  
in sum of squares 
(Example from R. Smith,  
Uncertainty Quantification)

Param

iteration



Metropolis & Metropolis-Hastings Caveats

• Assessing convergence—how long is burn-in?  

• What about when you have unidentifiability or multiple 
minima? 

• Correlated samples 

• How to choose a proposal width? (~size of next jump)



Wide range of methods

• Metropolis–Hastings 

• Gibbs sampling 

• Variations of the above: prior optimization, multi-start, 
adaptive methods, delayed rejection 

• DRAM (Delayed Rejection Adaptive Metropolis-
Hastings) 

• Many more!



Examples













Sample Importance Resampling and  
Approximate Bayesian Computation

• MCMC can be slow—another approach to getting a rough 
sample of parameter space that matches the data is sample 
importance resampling  

• Can be used with the true likelihood 

• Or with an approximating function (approximate Bayesian 
computation) 

• E.g. may take a threshold based on distance between 
the model and observed data 

• One of a bunch of related approaches in importance 
sampling/approximate Bayesian computation/etc)



Basic idea

• Draw a sample of parameters from your prior (either 
drawing at random or with LHS/sobol/etc. sampling) 

• Run the model for each sample 

• Calculate the likelihood value (or approximation of it) for 
each sample 

• Weight the samples based on the likelihood 

• Resample to get the final set of samples



https://en.wikipedia.org/wiki/Approximate_Bayesian_computation



Example: Norovirus model

Havumaki et al. 2020





Readings

• Menzies NA, Soeteman DI, Pandya A, Kim JJ. Bayesian 
methods for calibrating health policy models: a tutorial. 
PharmacoEconomics. 2017 Jun 1;35(6):613-24.


