
Lecture 12: Introduction 
to parameter estimation

Complex Systems 530



Outline
• Today 

• Intro to parameter estimation (for models in 
general, not just ABMs) 

• Some of the challenges involved in using these 
tools for ABMs 

• Next time: Bayesian & sampling based 
approaches, intro to MCMC



Connecting Models with Data
• Depending on parameters, models can give very 

different results 

• How to figure out parameters for model? 

• Direct measurements of parameters often difficult 

• If we have data on what is observed in the real world, 
this may be able to tell us something about what parts 
of parameter space are more realistic? 

• How to connect models with data?
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Parameter estimation goals
• In general—search parameter space to find optimal 

fit to data 
• Or to characterize distribution of parameters that 

matches data

Yay! Multiple Mins Unidentifiability



However
• Parameter estimation is one way to connect models with data—not 

the only one! 

• Just because a model does not precisely fit the data 
quantitatively, does not mean it cannot bring useful insight!  

• Usefulness of models is not just about prediction or data fitting 

• Qualitative patterns are important 

• Often may not have every detail of the mechanism, or may not have 
enough data to characterize fully, but models can be useful to 
reason and get intuition about the system—often moreso than a 
model that ‘fits’ the data better (e.g. think about a mechanistic 
model vs a spline)



Parameter Estimation
• Basic idea/assumption: parameters that 

give model behavior that more closely 
matches data are ‘best’ or ‘most likely’ 

• How to find the ‘closest’ or ‘best’ match? 
• Cost or objective function: a way to 

say how close the model is to the data 
• Optimization: a way to adjust the model 

to get the best match, i.e. to minimize 
the cost function 

• We want to frame this idea from a statistical 
perspective (inference, regression) 
• Can determine ‘most likely’ parameters 

or distribution, confidence intervals, etc.

Cost function: high (bad)

Cost function: low (good)

Model
Data



Many things can go wrong!
• Data issues - bias, noise, missing data, not enough 

data 

• Model issues 

• Model misspecification 

• Unidentifiability—particularly for complex models 
like ABMs, we can expect that many different 
parameter sets will fit the data equally well



Least squares - one of the most commonly used 
forms of parameter estimation and optimization

• Goal: adjust parameters to match the data as 
closely as possible 

• Residual: distance between model and data at a 
given time point

: model prediction  
  for time i

: data for time i

residual



Least squares estimation

• Minimize residuals? Problem is, sign issues

Sum of 
residuals: 
+1 - 1 = 0 
even though 
model is far 
from data

: model 
prediction for 
time i

: data for time i



Least squares estimation

• Least Squares: Minimize square of residuals 
 
 
 

• All errors have same sign in summation 

• Penalizes large errors—square term is  
less than one for small residuals  
(|zi-yi| < 1) but bigger than 1 for big  
residuals (|zi-yi| > 1)

: model prediction 
for time i

: data for time i

residual
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Mini Example

- Model: y = mx 

- 1 parameter, m 

- Cost function f(m) 

- Sum of squares 

- Initial guess:  
m = 0.75 

- Cost function: 3.429 



m = 0.75, Cost = 3.429 m = 0.5, Cost = 3.708 

m = 1, Cost = 1.654 m = 0.75, Cost = 3.429 

Worse! 
Let’s 
go 
back

Increasing 
m is better

Start

1 2

3 4



m = 1.2, Cost = 0.0016 

m = 1.5, Cost = 3.781 

m = 1, Cost = 1.654 

Went 
too 
far!

This 
looks 
pretty 
good! 
Let’s try a 
little 
further

4 5

6

Okay, so m = 1.2 seems the 
best of the guesses we’ve 
tried! Let’s plot our progress
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Optimization
Basic idea: use mathematical and computational methods to make 
something optimal (best) 

In our case, usually what we mean is to choose a function or formula 
that represents what we want to optimize (e.g. how close or far is our 
model from the data, or how well a control strategy is working, or the 
actual cost of something), and find the minimum or maximum value! 

This function is called our cost or objective function



Vocabulary

• Objective function or cost function, f(x): the function we 
are trying to minimize or maximize (e.g. goodness of fit). Can 
be a function of a range of different variables!  

• Usually a function of our data and the parameters and 
variables of our model 

• Historically, convention is to minimize f(x) (note if you 
want to maximize just minimize -f(x) !) 

• Variables/inputs/parameters: inputs to the cost function 
that we can adjust/change/control 

• Constraints: any restrictions to our optimization (e.g. find 
the biggest number, but our constraints are that it has to be 
even and less than 11) 



Optimization methods

Many methods do something like: 

- Take in a set of starting parameter 
values (initial values) 

- Evaluate the nearby cost function 
landscape (i.e. what are nearby 
cost function values) 

- Pick a new set of parameter values 

- Repeat until no further improvement 
can be made, or enough parameter 
values have been sampled

Color = Cost function
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Optimization methods: gradient descent

• Fast!  

• Relatively easy to use and 
implement 

• Can get stuck in local minima 

• Some surfaces can cause 
weird/problematic behavior 
(zig-zag issue, soft serve ice 
cream example)



Optimization methods: simplex algorithms

• Can be similar to gradient 
search 

• Easy to implement 

• Fast, efficient to compute 

• Gets around some of the 
issues of gradient descent, 
but can still get caught in local 
minima 

• E.g. Nelder-Mead algorithm



Global optimization methods

- Many options! Simulated annealing, evolutionary algorithms, etc 

- Markov Chain Monte Carlo (MCMC) methods can also be 
considered in this category 

- These approaches typically allow for some acceptance of worse 
cost function values, to allow the optimizer to escape local minima 

- Also often involve examining many different initial parameter 
values or many parameter samples, to more fully explore the cost 
function surface 

- Gives a better view of the cost function surface—but often very(!) 
slow compared to local optimization methods (gradient descent, 
simplex methods, etc)



Optimization methods are often formulated for convex, 
single minimum surfaces—multiple minima and canyons 
(sometimes called unidentifiability) can cause problems



Code examples parts 
1 and 2

https://colab.research.google.com/drive/1RfnFBk3o6AEEQzWn9fLsIvmkWeG4fkap?usp=sharing
https://colab.research.google.com/drive/1RfnFBk3o6AEEQzWn9fLsIvmkWeG4fkap?usp=sharing
https://colab.research.google.com/drive/1RfnFBk3o6AEEQzWn9fLsIvmkWeG4fkap?usp=sharing
https://colab.research.google.com/drive/1RfnFBk3o6AEEQzWn9fLsIvmkWeG4fkap?usp=sharing


How to frame this statistically?  
Maximum Likelihood

• View our model as a probability distribution, where 
we suppose we know the general form of the 
probability density function but not the parameter 
values 

• Then if we knew the parameters we could calculate 
probability of a particular observation/data: 
 

• Figure out which parameter values make the model 
most likely to generate the data we see

P z | p( )
data parameters



Maximum Likelihood
Given the parameters, we can usually work out the probability of 
observing a particular data set 

For example, suppose we have a potentially biased coin, and we 
want to estimate the probability that a coin flip results in heads—
call this parameter p. 

- Our data (call this z): we measure 3 coin flips: H, T, H.  

- What’s the probability that p = 0.5 given this data? Hard to 
say! 

- But, if we knew p, we can definitely calculate the probability of 
seeing this data. Assume the coin flips are independent, then: 
  P(z|p) = p*(1-p)*p 

This P(z|p) is the likelihood! The main idea of maximum 
likelihood is to choose p to maximize this



Maximum likelihood estimate?

Data (z) is 3 coin flips: H, T, H 
 
Likelihood function:  
P(z|p) = p*(1-p)*p 

What value of p maximizes this?  

P(z|p) = p*(1-p)*p = p2 - p3 

(Note this is actually a constrained 
optimization problem—p must be 
between 0 and 1) 

We could code it up—but we can 
also just plot it!

P
(z

|p
)

pMaximum 
likelihood 
estimate! 
p = 2/3



Maximum Likelihood

• Likelihood Function: the probability of seeing the data 
we have, assuming that we knew the parameter values   

• Re-think the distribution as a function of the data 
instead of the parameters 

• E.g.  

• Find the value of p that maximizes L(p|z) - this is the 
maximum likelihood estimate (MLE) (most likely given 
the data)—in other words, L becomes our cost 
function! (usually actually - log(L) but this is the idea!)

P z | p( ) = f z, p( ) = L p | z( )

f z | µ,σ 2( ) = 1
2πσ

exp −
z − µ( )2

2σ 2

$

%
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(
) = L µ,σ 2 | z( )







Our data: Our model: 

- Candy cookie vs. no-
candy cookie 

- Our model parameters? 
Just one—an indicator 
variable c, where: 

- c = 0 if it was a no-
candy cookie 

- c = 1 if it was a candy 
cookie



In other words, our 
parameter estimation 
problem is to 
estimate c! 

Does c = 0 or 1?



What is the likelihood? 
L(c = 0 | NC bite) = P(NC bite | c = 0) = 1



What is the likelihood? 
L(c = 1 | NC bite) = P(NC bite | c = 1) = 1/3



What is the maximum likelihood estimate? 
1 > ⅓, so we estimate that c = 0



Likelihood function

We usually plot a probability distribution something like this: 

But, there are parameters that control the shape of this 
distribution! The mean, standard deviation, etc. 
Really, we should maybe think of it more like:



Likelihood Function

Data value
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the distribution shifts
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Maximum Likelihood

• Consistency - with sufficiently large number of 
observations n, it is possible to find the value of p with 
arbitrary precision (i.e. converges in probability to p) 

• Normality - as the sample size increases, the distribution 
of the MLE tends to a Gaussian distribution with mean and 
covariance matrix equal to the inverse of the Fisher 
information matrix 

• Efficiency - achieves CR bound as sample size⟶∞ (no 
consistent estimator has lower asymptotic mean squared 
error than MLE)



Maximum likelihood recap

- In general, your likelihood is just the probability distribution of your 
data, assuming that you knew your parameter values 
- Then, we ‘re-think’ of that distribution as a function of the 

parameters with the data fixed—this is the likelihood 

- Make the likelihood your cost function and find the parameter 
values that maximize it!  
- In other words, use optimization to figure out: what parameter 

values make your data very likely to be what the model would 
predict? 

- For some models, there are known formulas to find the 
optimum parameter values, but in many cases we have to use 
numerical (computational) optimization methods



How does this work with more 
complicated models?

E.g. linear regression, etc? 

Usually we view the model as describing one of the parameters or 
features/moments (e.g. the mean) of the distribution. 

Revisit our least squares example—this is actually maximum likelihood!  

Suppose we view the data (z) as coming  
from a normal distribution, but where the  
mean is given by a linear model like  
y = mx, and suppose we know the  
standard deviation

or 
z

z



Revisit code



Example: deterministic 
mean field model

• E.g. something like the Erdos-Renyi network SIR 
mean field model we derived before: 

• Or you can think of any other simple deterministic 
model if you’d prefer (e.g. some simple CA models 
would also work as the example here)































































































































































































































































































































































































































































































Example: difference equation model 
with Gaussian measurement error

• Model: 

• Discuss - measurement equation y 

• Suppose data is taken at times 

• Data at ti =  

• Suppose error is gaussian and unbiased, with 
known variance      (can also be considered an 
unknown parameter)

zi = y ti( ) + ei

t1,t2 ,…,tn

σ 2

x(t+ 1) = f(x, t, p)

y(t) = g(x, t, p)



Example: difference equation model 
with Gaussian measurement error

• The measured data     at time i can be viewed as a 
sample from a Gaussian distribution with mean  
y(x, ti,p) and variance  

• Suppose all measurements are independent (is 
this realistic?)
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Example: difference equation model 
with Gaussian measurement error

• Then the likelihood function can be calculated as:

f zi | µ,σ
2( ) = 1

2πσ
exp −

zi − µ( )2

2σ 2

$

%
&

'

(
)Gaussian PDF:



Example: difference equation model 
with Gaussian measurement error

• Then the likelihood function can be calculated as:

f zi | µ,σ
2( ) = 1

2πσ
exp −

zi − µ( )2

2σ 2

$
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'

(
)Gaussian PDF:

f zi | y x,ti , p( ),σ 2( ) = 1
2πσ

exp −
zi − y ti , p( )( )2

2σ 2
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Formatted for 
model:



Example: difference equation model 
with Gaussian measurement error

• Then the likelihood function can be calculated as:

f zi | µ,σ
2( ) = 1

2πσ
exp −

zi − µ( )2

2σ 2
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)Gaussian PDF:

f zi | y x,ti , p( ),σ 2( ) = 1
2πσ

exp −
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Formatted for 
model:

Likelihood function assuming independent observations:

L y ti , p( ),σ 2 | z1,…, zn( ) = f z1,…, zn | y ti , p( ),σ 2( )
= f zi | y ti , p( ),σ 2( )

i=1

n
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Example: difference equation model 
with Gaussian measurement error

L y ti , p( ),σ 2 | z1,…, zn( ) = 1
2πσ 2
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Example: difference equation model 
with Gaussian measurement error

−LL = − ln 1
2πσ 2
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• It is often more convenient to minimize the 
Negative Log Likelihood (-LL) instead of 
maximizing the Likelihood 

• Log is well behaved, minimization algorithms 
common



Example: difference equation model 
with Gaussian measurement error
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Example: difference equation model 
with Gaussian measurement error

−LL = n
2
ln 2π( ) + n ln σ( ) +

zi − y ti , p( )( )2
i=1

n

∑
2σ 2

If    is known, then first two terms are constants & will not be 
changed as p is varied—so we can minimize only the 3rd term 

and get the same answer

min p −LL( ) = min p
zi − y ti , p( )( )2
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Example: difference equation model 
with Gaussian measurement error

• Similarly for denominator: 

• This is just least squares!  

• So, least squares is equivalent to the ML estimator 
when we assume a constant known variance

min p −LL( ) = min p
zi − y ti , p( )( )2

i=1

n
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Maximum Likelihood

• Can calculate other ML estimators for different 
distributions 

• Not always least squares-ish! (mostly not) 

• Although surprisingly, least squares does fairly 
decently a lot of the time



Example - Poisson ML

• For count data (e.g. incidence data), the 
Poisson distribution is often more realistic than 
Gaussian 

• Likelihood function?



Example - Poisson ML
• Model: 

• Data     is assumed to be Poisson with mean  

• Assume all data points are independent 

• Poisson PMF: 

y ti( )zi

f zi | y ti( )( ) = y ti( )zi e− y ti( )

zi !

x(t+ 1) = f(x, t, p)

y(t) = g(x, t, p)



Example - Poisson ML
• Likelihood function: 

 
 
 
 
 
 
 

=
y ti( )zi e− y ti( )

zi !i=1

n
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L y t, p( ) | z1,…, zn( ) = f z1,…, zn | y t, p( )( )

= f zi | y t, p( )( )
i=1

n
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Poisson ML
• Negative log likelihood: 

 
 
 
 
 
 
 
 

• Last term is constant

−LL = − ln
y ti( )zi e− y ti( )
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Example - Poisson ML
• Poisson ML Estimator: 

• Other common distributions - negative binomial 
(overdispersion), zero-inflated poisson or 
negative binomial, etc.

min p −LL( ) = min p − zi ln y ti( )( ) + y ti( )
i=1

n

∑
i=1

n

∑
#
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Maximum likelihood for 
deterministic models

• Basic approach for deterministic models - suppose only 
measurement error (otherwise distribution is determined 
by the model stochasticity and measurement error) 

• Data is given by distribution where model output is the 
mean  

• Suppose each time point of data is independent 

• Use PDF/PMF to calculate the likelihood 

• Take the negative log likelihood, minimize this over the 
parameter space



Maximum Likelihood for 
ABMs & other kinds of models

• Can be quite different! 

• May require more computation to evaluate (e.g. 
stochastic models) 

• May also be structured quite differently! (e.g. 
network or individual-based models)



Tiny Network Example

• Data: infection pattern on the network 

• Model: suppose constant probability p of infecting 
along an edge from someone who got sick before 
you 

• What’s the likelihood?



Tiny Network Example
• Data: infection pattern on the network 

• Model: suppose constant probability p of infecting along 
an edge, assuming we start with first case 

• What’s the likelihood? 

• Let’s see how we would calculate  
it for a specific data set 

• L(p,data) = P(susc nodes did not get sick)  
                                       x  P(infected nodes did get sick)



Very (very!) brief intro to 
Bayesian estimation

• Allows one to account for prior information about 
the parameters 

• E.g. previous studies in a similar population 

• Update parameter information based on new data 

• Recall Bayes’ Theorem:

P p | z( ) = P params | data( ) = P z | p( ) ⋅P p( )
P z( )



Very (very!) brief intro to 
Bayesian estimation

P p | z( ) = P params | data( ) = P z | p( ) ⋅P p( )
P z( )

Likelihood
Prior 

distribution

Normalizing constant 
(can be difficult to calculate!)



Bayesian Parameter 
Estimation

• From prior distribution & likelihood distribution, 
determine the posterior distribution of the 
parameter 

• Can repeat this process as new data is available



Bayesian Parameter 
Estimation

• Treats the parameters inherently as distributions 
(belief) 

• Philosophical battle between Bayesian & 
frequentist perspectives 

• Word of caution on choosing your priors 

• Denominator issues - MAP Approach



Sampling-based approaches 
to parameter estimation

• In our maximum likelihood example, we were able 
to write down our likelihood explicitly, in terms of 
equations (e.g. using a normal distribution and the 
model equations) 

• However, for more complex models, or for Bayesian 
estimation, it’s often difficult or impossible to write 
down an equation for the posterior/likelihood/etc.



Sampling-based approaches 
to parameter estimation

• Instead—we can use sampling based approaches 
to sample from the posterior/likelihood—this is 
often more tractable for ABMs and other complex 
models 

• More on this next time!



from XKCD:
http://xkcd.com/1132/

http://xkcd.com/1132/
http://xkcd.com/1132/


Some points when you’re doing parameter 
estimation

Be sure visualize the fit of your model! I.e. plot the model and 
the data on the same plot and see how good your model is at 
matching the data 

• People will often just run the optimization and then accept 
the numbers that come out of it—these can be totally 
meaningless if the fit is bad! (and even if the fit is good…) 
The likelihood or cost function value often doesn’t really tell 
you how well the model fits the data, you need to look at it 
and see if it makes sense 

• This can be difficult with high dimensional data sets! You 
may need to do some thinking about how to visualize this, 
but it’s worth it to make sure you do



Some points when you’re doing parameter 
estimation

Be careful about local minima or canyons 
(unidentifiability)! 

• Optimization algorithms will not always know or warn 
you that this is a problem—you can be very mislead by 
parameter estimates if this is the case



Some points when you’re doing parameter 
estimation

Think carefully about how you choose your model! 

• Assumptions, overfitting, and model selection 

• Try multiple models (and think carefully about how you 
will choose between them!)


