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Sayesian approaches to parameter estimation

Bayes’ Theorem, rewritten for inference problems:

P(z!p)-P(p)

P(plz)= P(paramsldata)= P(Z)

+ Allows one to account for prior information about the
parameters

E.g. previous studies in a similar population

- Update parameter information based on new data



Sayesian approaches to parameter estimation

L Prior
leehw distribution
/
P(zIp)-P(p)

P(plz)= P(params|data) =

Normalizing constant
(can be difficult to calculate!)

P(z) = / Pz, p)dp



Bayesian probabillity for babies!

Some cookies have candy. Some don'‘t.



Take a bite. It has no candy.

Did it come from a candy cookie?



What is the likelihood”?
L(NC cookie | NC bite) = P(NC bite | NC cookie)

Pr(@w|@)

1

The probability of a no-candy bite,
given a no-candy cookie, isl

If the cookie had no candy,
then every bite would have no candy.



What is the likelihood”?
L (C cookie | NC bite) = P(NC bite | C cookig)

Pr(@|@)
1/3

The probability of a no-candy bite,
given a candy cookie, is 1/3.

'If the cookie had candy, then very
few bites would have no candy.



What is the maximum likelihood estimate?

Maximum likelihooa:

Pr(@|@) > Pri@|@)

1is greater than 1/3. So the no-candy bite probably
came from a no-candy cookie!



What about the prior distribution of cookies”?

!

But what if we knew there were 10 cookies, and all had candy but one?



Our data (likelihood) tells us we have a no-candy
bite—how many of the bites are no candy”?
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Take a bite of each.
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| here are 4 no-candy bites.
3 bites are from candy cookies.
1 bite is from a no-candy cookie.



1/3 of the candy cookie bites have no candy, but
there are a lot more of them

|  000®

Pr(@ )
3/4

: : robability of a candy cookie
1/3 of the candy cookies have a no-candy bite. Th%v'i)th < no-c!mdy bite is 3/4.

Prior X Likelihood ~ Posterior
9 x 1/3 = 3 candy cookies, vs. 1 x 1 = 1 no-candy cookie



Sayesian estimation!

This is the prior distribution of cookies. - e i
This is the posterior distribution of cookies.



Sayesian approaches to parameter estimation

L Prior
leehw distribution
/
P(zIp)-P(p)

P(plz)= P(params|data) =

Normalizing constant
(can be difficult to calculate!)

P(z) = / Pz, p)dp



BSayesian Parameter Estimation

Can think of Bayesian estimation as a map, where we
update the prior to a new posterior based on data
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Denominator term - P(z)

- The denominator term:

P(z) = / Pz, p)dp

- Probabillity of seeing the data z from the model, over all
parameter space

- Often doesn’t have a closed form solution—evaluating
numerically can also be difficult

- E.g. If pis athree dimensional, then if we took 1000 grid
points in each direction, the grid representing the function
to be integrated has 10003 = 109 points



Maximum a posteriori (MAP) estimation

- Instead of working with the full term, just use the
numerator:
P(z|p) - P(p)
P(z)

he denominator Is a constant, so the numerator Is
proportional to the posterior we are trying to estimate

P(plz) =

- Then the p which yields max(P(z|p) - P(p)) is the same p
that maximizes P(p|z)

- |If we only need a point estimate, MAP gets around
needing to estimate P(z)



Conjugate Priors

- For a likelihood distribution, there may be a distribution
family for our prior, which makes the posterior and prior
come from the same type of distribution

- This Is called a conjugate prior for that likelihooo

- For example, a gamma distribution is the conjugate prior
for a Poisson likelihood.

P(z
P(p) ——| X IS(LZ)?) > P(p Z)
Gamma . Gamma
Poisson




Why conjugate priors”

f we have a conjugate prior, we can calculate the
oosterior directly from the likelihood and the prior—
nandles the issue with calculating the denominator P(z)

-+ Also makes it easier to repeat Bayesian estimation—
making the posterior the prior and updating as new data
CcOmes in

P(p)— [x TP | py)

P(z)

Prior Posterior




Conjugate prior example: coin flip

- Let z be the data—1.e. the coin flip outcome, z =1 If it's
heads, z =0 if it's tails

- Let B be the probability the coin shows heads

- Likelihood: Bernoulli distribution

P(2]0) = 67 (1 — 9)1—=



Conjugate prior example: coin flip

-+ Conjugate prior: beta distribution

P0la, 5) =

- a and (3 are hyperparameters - shape parameters that
describe the distribution of the model parameters




How does the posterior work out to be a beta
distribution as well?

p(o}s ~ EEAEGla.S

- 1—» 9@—1(1_9),8—1
0*(1 - 9) [o 02=1(1—6)P~1d0
P(z)

- 1—» 9@—1(1_9)[3—1
0*(1 —0) [l oa—1(1-6)8-1dg

[y P(z,6)d6

. 1—» 904—1(1_8)5—1
0*(1 —0) [loa—1(1-6)—1d0

[ 0%(1 — 6)1==dp

Etc. —but you can see it will work out to be beta distributed



Coin flip example - Posterior

Beta distributed with posterior hyperparameters:

Oépost:&_l_z 5}9087525_'_1_75

If we take multiple data points, this works out to be:

n

n
CVpogt:Oé_'_E <5 5}90375:5_'_”_5 <
1=1

1=1



Sampling methods: approximating a distribution

- What if we want priors that aren’t conjugate” Or what if
our likelihood is more complicated and it isn’t clear what
the conjugate prior is”

- Now we need some way to get the posterior, even
though the denominator term is annoying

ow to approximate the distribution?



Markov Chain Monte Carlo (MCMC)

- Sampling-based methods—in particular, Markov chain
Monte Carlo (MCMC(C)

- Also used for many other things! Can approximate
distributions more generally —used in cryptography,
calculating neutron diffusion, all sorts of things



Markov Chain Monte Carlo (MCMC)

- MCMC is a method for sampling from a distribution
- Markov chain: a type of (discrete) Markov process

- Markov: memoryless, I.e. what happens at the next
step only depends on the current step

- Monte Carlo methods are a class of algorithms that
use sampling/randomness —often used to solve
deterministic problems (such as approximating an
integral)



Markov Chain Monte Carlo (MCMC)

- Main idea: make a Markov chain that converges to the
distribution we’re trying to sample from—in this case, the
posterior distribtuion!

- The Markov chain will have some transient dynamics
(lourn-in), and then reach an equilibrium distribution
which is the one we're trying to approximate



Markov Chain Monte Carlo (MCMC)

- Many MCMC methods are based on random walks

- Set up walk to spend more time in higher probabllity
regions

- Jypically don’t need the actual distribution for this, just
something proportional—so we can get the relative
probabllity density at two points

- S0 we don’t need to calculate P(z)! We can just use the
numerator



Example adapted from https://nicercode.github.io/guides/mcmc/

—Xample

Suppose two parameters, with likelihood x prior:

parameter 2

parameter 1



We start our parameter values at a random guess

The random walk the MCMC traverses is shown as
Sample path  ihe grey line

parameter 2
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parameter 1
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Over time, the random walk accrues samples of the posterior
distribution, proportional to the probability of those values. In other
Sample path words, we get more samples from higher probability regions

parameter 2

-10

-15

parameter 1



parameter 2

Eventually, the sampled values recreate the posterior
distribution! And we didn’'t need the denominator term,

Samp|ed denSity only the numerator term, so these are relatively easy to

calculate

-10

-15

Can also get marginals:

Probability density
0.00 0.05 0.10 0.15 0.20
|

parameter 1

parameter 1



—xample: Metropolis Algorithm

- |dea is to ‘walk’ randomly through parameter space,
spending more time In places that are higher probability —
that way, the overall distribution draws more from higher
probabllity spots

+ Setup—we need

- A function f(p) proportional to the distribution we want
to sample, in our case f(p) = P(z|p) - P(p)

- A proposal distribution (how we choose the next point
from the current one) - more on this in a minute



Metropolis Algorithm

- Start at some point in parameter space
For each iteration

Propose a new random point prez: ased on the
current point pewurr (USING the proposal distribution)

- Calculate the acceptance ratio, o = f(pnest)/ f (Peurr)
f o« > 1, the new point is as good or better—accept

If o« < 1, accept with probabillity «



What does the metropolis algorithm do?

f«posterior

start



What does the metropolis algorithm do?

f«posterior

proposal
distribution

pnext pcurr D



What does the metropolis algorithm do?

S
8
7P
O
Q.
qﬁ
}o>0
— Accept

pnext pcurr 0



What does the metropolis algorithm do?

f«posterior

—Maybe accept with probabilitr a
}0>o

l

ocurr pnext D



What does the metropolis algorithm do?

—Maybe accept with probability a

f«posterior

le>e

pnext  pcurr D



What does the metropolis algorithm do?

f«posterior

pcurr



What does the metropolis algorithm do?

f«posterior

oCurT



What does the metropolis algorithm do?

f«posterior

oCurr



What does the metropolis algorithm do?

f«posterior

oCuUrT



Why does this recover the posterior distribution?
Key Is the acceptance ratio o

We want the amount
of time spent here\

To be ~twice the amount
of time spent here

-~

Acceptance ratio = ratio of heights

posterior



Why does this recover the posterior distribution?

- The acceptance ratio a = f(pnewst)/f(Peurr)

- Note it is equal 10 P(pnext|2)/ P(Peurr|2) SiNCE the
denominators cancel

- Suppose we're at the peak

+If f(peurr) = 2 f(Prext), then a = 1/2, i.e. we accept with
1/2 probability

+ Overall, will mean the number of samples we take from a
region will be proportional to the height of the distribution



Proposal Distribution

- A distribution that lets us choose our next point randomly
from our current one

For Metropolis algorithm, must be symmetric

- Common to choose a normal distribution centered on
current point

- Width (SD) of normal = proposal width

- Choice of proposal width can strongly affect how the
Markov chain behaves, how well it converges, mixes, etc.



—Xample

Model: normal distribution N (u, o)

+ Suppose o is known, p to be estimated

(z—/t)2

Likelihood: PGilu 1) =filu1) = —— e Pilw) = || f@ipn D
i=1

\V2n

Prior: p~ N(0, 3) \

+ Suppose we have 20 data points




mu

—xample - proposal width: SD

0.5

5.0

4.0
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iteration

5000

iteration




mu

Goldilocks problem:
What happens if we change the proposal width?

poroposal SD = 0.05 poroposal SD = 2
3 - Rk
o | o
< — <
— - ]
= o
Q] oI
o —
h o _
S _ " . 3 O N
N e i
I [ I [ | |
0 100 200 300 400 500 0 100 200 300 400 500

iteration iteration



—xample: prior, likelihood, and posterior (all scaled)

20-
1.5~
>
n
S E Likelihood
- 1.0
§e, E Prior
@
§ E Sampled Posterior
0.5
0.0-



MCMGC

- MCMC improves many of the problems that other
optimization methods face (getting trapped in local
minima, etc.)

- However, those issues can still cause problems for
MCMC too

ow to know when you’ve run the MCMC long enough
and collected enough samples to reflect the distribution”?

- How to know If you have explored the space sufficiently?



Assessing convergence

MCMC methods will let us sample the posterior once
they've converged to their equilibrium distribution

How to know once we'’ve reached equilibrium?
- Visual evaluation of burn-in
- Autocorrelation of elements In chain k iterations apart

- Also approaches to use in combination with/instead of
burn-in: start with MAP estimation, multiple chains, etc.



Assessing convergence

+ Often done visually

- Although, this can be misleading:
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| Chain shifts after 130,000

iterations due to a local min
IN sum of squares
(Example from R. Smith,

| Uncertainty Quantification)



Metropolis & Metropolis-Hastings Caveats

- Assessing convergence—how long is burn-in®?

- \What about when you have unidentifiability or multiple
minima’

- Correlated samples

- How to choose a proposal width”? (~size of next jump)



Wide range of methods

+  Metropolis—Hastings
+ Gibbs sampling

- Variations of the above: prior optimization, multi-start,
adaptive methods, delayed rejection

- DRAM (Delayed Rejection Adaptive Metropolis-
Hastings)

- Many more!



—Xxamples

American Journal of Epidemiology Vol. 186, No. 12

.E © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of DOI: 10.1093/aje/kwx217
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June 9, 2017

Practice of Epidemiology

Application of an Individual-Based Transmission Hazard Model for Estimation
of Influenza Vaccine Effectiveness in a Household Cohort

Joshua G. Petrie*, Marisa C. Eisenberg, Sophia Ng, Ryan E. Malosh, Kyu Han Lee, Suzanne
E. Ohmit, and Arnold S. Monto
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Table 2. Observed and Individual-Based Transmission Hazard Model-Predicted Influenza A(H3N2) Infections According to Infection Source,
Age, Presence of High-Risk Health Condition, and Influenza Vaccination Status, Household Influenza Vaccine Effectiveness Study, Ann Arbor,
Michigan, 2010-2011

Observed Data TH Model Predictions
Characteristic No.of Cases Total No. Exposed % Median No. of 95% % 95% Cr P
(n =58) (n=1,441) Positive Cases Crl Positive Value?

Community-acquired 41 1,441 2.8 43 31,55 3.0 22,38 0.70
Household-acquired 17 111 15.3 18 9,30 13.2 6.6,20.5

Secondary N/O N/O 15 7,24

Tertiary N/O N/O 3 0,9

Quaternary N/O N/O 0 0,0
Age category, years 0.80

<9 32 468 6.8 36 22,50 7.7 47,107

9-17 8 371 2.2 8 3,14 22 0.8,3.8

>18 18 602 3.0 18 9,27 3.0 15,45
Documented high-risk health 0.49

condition

Any 6 162 3.7 5 1,11 3.1 0.6,6.8

None 52 1,279 4.1 56 38,76 44 3.0,5.9
Documented influenza vaccination® 0.45

Yes 33 864 3.8 32 19,48 3.7 22,56

No 25 577 4.3 29 16, 44 50 28,7.6
Overall model predictions 62 42, 82 4.3 2.9,5.7

Abbreviations: Crl, credible interval; N/O, not observed; TH, transmission hazard.

2 Simulation-based y? test.

® At least 1 dose of 20102011 influenza vaccine documented in the electronic medical record or state registry; vaccination must have occurred
>14 days prior to iliness onset for influenza A(H3N2) infected subjects.
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MCMC code examples

- Basic normal distribution model with MCMC
- Mean-field SIR model MCMC

- Recap model structure

- Go through code

- lllustrate identifiability issues



Sample Importance Resampling

- MCMC can be slow—another approach to getting a
posterior sample Is sample importance resampling

- Can be used with the true likelinood

- Or with an approximating function (e.g. approximate
Bayesian computation, more on this in a bit)

»+ One of a bunch of related approaches in importance
sampling/approximate Bayesian computation/etc)



Using reweighting to convert between distributions

- Starts with a sample of values drawn from probability
distribution A, and suppose probability distribution B is our
target distribution

- Set the weight of each element x to be PDFg(X)/PDFa(X)

- Sample from the list using the above weights (normalized to
sum to 1 say)

- This results in a draw from distribution B, even though
distribution A was used to generate the sample! (With caveats
that you need to make your initial sample big enough etc.)



Sample Importance Resampling

- Draw a sample of parameters from your prior (either drawing at
random or with LHS/Sobol/etc. sampling)

- Run the model for each sample

- Calculate the likelihood value for each sample

- Weight the samples based on the likelihood

- Resample to get the final set of samples

- The result follows the posterior distribution because you sample from

the prior, and then weight with the likelihood (and we don’t divide by
the prior in our weighting like in the previous example)



—xample: Norovirus model

A(t)
e*u

8)* . P

s M ey B9 ¢ AB A,
""""""""""" a T

X .

i 1 i(al Ba)

F, § F, § (1 /o - 1 /u) i

.....................................................................

Havumaki et al. 2020



Attack Rate

Resampled Daycare Attack Rates vs. Outbreak Durations
NORS Baseline Immunity
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Likelihoods can be challenging to calculate for
agent based and network models

- Do a little mini example where the network is known
- What if the network structure is unknown"?
- Some done for Erdos-Renyi graphs, other special networks

+ Exponential random graph models (e.g. see this review for
SIR dynamics)

-+ Depends on what data you olbserve 100

- But often quite difficult, especially for more general ABMs or
networks


https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0142181
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0142181

So what to do?

In some cases can numerically approximate the likelihood

via sampling (i.e. figure out the probabi

the data for a given set of parameters

ity of observing
Oy sampling many

times from those parameter values, and then do this
across parameter space)—very computationally intensive

- Another alternative is approximate Bayesian

computation (ABC)



BC: Approximate Bayesian Computation

- Approximate the posterior by sampling from the prior and then

selecting only those samples that match the data closely (within
some threshold)

- Basic idea

- Choose a function to measure the distance between model and
data (goodness of fit), typically based on some sort of summary
statistic of the model fit

- Sample from the prior

- Keep only those samples that fall within a threshold based on
this distance function

- Resulting distribution of parameter samples should approximate
the posterior (if you choose a good summary statistic!)



Prior distribution of

Observational daté model parameter 6

u

(1) Compute summary statistic

(2) Given a certain model,
perform n simulations, each
with a parameter drawn from
the prior distribution

Simulation n

11 from observational data 0, 0, 0,

Simulation 1 Simulation 2 Simulation 3
(3) Compute summary = = -
statistic i, for each H, H, Ms

simulation

o) <€ X v X

(@) Based on a distance p(*,*)
and a tolerance &, decide for
each simulation whether its
summary statistic is sufficiently
close to that of the observed

Posterior distribution of
data.

model parameter 6

https://en.wikipedia.org/wiki/Approximate_Bayesian_computation

(5) Approximate the posterior
distribution of @ from the distribution

of parameter values 6, associated
with accepted simulations.



BC: Approximate Bayesian Computation

- The rejection sampling method is very common for ABC

But you can also do MCMC, samp
resampling, etc, but use the ABC ¢

neople use a lot!)

e Importance
IStance function

instead of the likelihood (e.g. ABC-MCMC is a thing

- See this review for more (and this post for associated

code)


https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1461-0248.2011.01640.x
https://theoreticalecology.wordpress.com/2012/07/15/a-simple-approximate-bayesian-computation-mcmc-abc-mcmc-in-r/
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1461-0248.2011.01640.x
https://theoreticalecology.wordpress.com/2012/07/15/a-simple-approximate-bayesian-computation-mcmc-abc-mcmc-in-r/

Coin flip example: p = probability of heads
distance function = |observed H - simulated H|

N Heads
-l Tals
Observed data Prior distribution
10.0 { 2.0
7.5 1 ek
3 F
[ - w
3 501 g 1 0
v Q
25 0.5+
o e ——
000 025 050 075 100
// eter p \\
5|mulat|on 0 simulation 1 simulation 2 simulation 3
10.0 4 10.0 4 10.0 4 10.0 4
7.5 1 7.51 7.5 1 1.514
w v v\
g g E S
3 5.0 4 4 5.04 2 504 3 5.01
~ v v
2.5 1 2.5 1 2.51 2.51
004 0.0 004 0.0
ve ata observed data observed data

X b 4

X v
\ P\osterior dlstrubullo/n /

3 751

3
3 501

25 1

0

00 02 04 06 08 10
parameter p

https://towardsdatascience.com/the-abcs-of-approximate-bayesian-computation-bfe11b8ca341



How well do we do?

Posterior for 10 trials

0.6 0.8 1.0

parameter p

3.5
— EXxact posterior

30 B ABC posterior

1.5

1.0

0.5

0.0
0.0 0.2 0.4

https://towardsdatascience.com/the-abcs-of-approximate-bayesian-computation-bfe11b8ca341



Another example: Markov process

9 Measurements y

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pchbi.1002803



i 0, Simulated Datasets (Step 2) Summary Statistic o, (Step 3) Distance p (05,0 (Step 4) Outcome (Step 4)
1 0.08 AABAAAABAABAAABAAAAA 8 2 accepted

2 0.68 AABBABABAAABBABABBAB 13 7 rejected

3 0.87 BBBABBABBBBABABBBBBA 9 3 rejected

4 0.43 AABAAAAABBABBBBBBBBA 6 0 accepted

5 0.53 ABBBBBAABBABBABAABBB 9 3 rejected

doi:10.1371/journal.pcbi.1002803.t001



05F

mm True posterior
0.45 mm ABC with ¢ =0 and
full data
0.4 ABC with ¢ = 0 and
summary statistic
ABC with ¢ =2 and
0.35

summary statistic
mm \Worked example

O
w

Posterior probability
o
O N
N &)

0.15

0.1

0.05

0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1
0



Summary statistic and threshold

e The absolute difference

e The sum of squared difference
=) [X(p) - Y(p)
peP

e Kullback-Leibler divergence (KL)

w0510 5 () - [ ()

peP



Summary statistic and threshold

- These are very tricky to choose!
- Often use an adaptive threshold

- Sufficient statistics are tough to sort out—often test
several candidate statistics (e.g. subset selection and
projection methods), and potentially use a simpler model
for testing (one where the likelihood is more tractable)




Error Source

Potential Issue

Solution

Subsection

Nonzero tolerance ¢

Nonsufficient summary statistics

Small number of models/mis-
specified models

Priors and parameter ranges

Curse-of-dimensionality

Model ranking with summary statistics

Implementation

The inexactness introduces a bias in
the computed posterior distribution.

The information loss causes inflated
credible intervals.

The investigated models are not
representative/lack predictive power.

Conclusions may be sensitive to the
choice of priors. Model choice may
be meaningless.

Low parameter acceptance rates.
Model errors cannot be distinguished
from an insufficient exploration of the
parameter space. Risk of overfitting.

The computation of Bayes factors on
summary statistics may not be related
to the Bayes factors on the original
data, which may therefore render the
results meaningless.

Low protection to common
assumptions in the simulation
and the inference process.

Theoretical/practical studies of the
sensitivity of the posterior distribution to
the tolerance. Noisy ABC.

Automatic selection/semi-automatic
identification of sufficient statistics.
Model validation checks (e.g.,
Templeton 2009 [19]).

Careful selection of models. Evaluation
of the predictive power.

Check sensitivity of Bayes factors to the
choice of priors. Some theoretical results
regarding choice of priors are available.
Use alternative methods for model
validation.

Methods for model reduction if
applicable. Methods to speed up the
parameter exploration. Quality
controls to detect overfitting.

Only use summary statistics that fulfill the
necessary and sufficient conditions to
produce a consistent Bayesian model
choice. Use alternative methods for
model validation.

Sanity checks of results. Standardization
of software.

Approximation of the posterior

Choice and sufficiency of summary
statistics

Small number of models

Prior distribution and parameter ranges

Curse-of-dimensionality

Bayes factor with ABC and summary
statistics

Indispensable quality controls

doi:10.1371/journal.pcbi.1002803.t002



Readings

- Menzies NA, Soeteman DI, Pandya A, Kim JJ. Bayesian
methods for calibrating health policy models: a tutorial.
PharmacokEconomics. 2017 Jun 1;35(6):613-24.




