| ecture 4: Introduction
to Cellular Automata

Complex Systems 530



What 1s a cellular
automaton®”?

 Automata: "a theoretical machine that changes its
internal state based on inputs and its previous
state” (usually finite and discrete) - Sayama p.185

* Cellular automata: automata on a regular spatial
grid, that update state based on their neighbors’
states, using a state transition function

e Usually synchronous, discrete in time & space,
often deterministic (but not always!)
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Figure 11.1: Schematic illustration of how cellular automata work.

Sayama p. 187 (Chp. 11)



Cellular automata

e Cellular automata can generate highly nonlineatr,
even seemingly random behavior

 Much more complexity than one might expect from
simple rules—emergent behavior

* [o explore this, let's start with an even ‘simpler’ type
of cellular automata—1-dimensional CA and some
of the classic work of Stephen Wolfram



1-dimensional CA

* We can think of our grid as a string or line of cells

* Finite sequence - 1 row of cells, so everyone has 2
neighbors except the end points

 Choose how to interpret the ends (lack of
neighbors or fixed states at ends)

* RIng - all cells have 2 neighbors

 Infinite sequence - an infinite number of cells
arranged in a row



Finite sequence 1D CA

e Start with a 3-cell neighborhood (left, self, right)

» We can fully specity our CA by listing all the
possible neighborhood configurations and saying
what happens to the center cell, for example:

prev | 111 | 110 | 101 | 100 | 011 | 010 | 001 | 00O
next 0 0 1 1 0 0 1 0

 We can name our CA by translating the “next” row
from binary to decimal: this is Rule 50!
(256 total possible CAs of this type)

Downey, Think Complexity (Chp. 6)



Rule 50

Starting___—»{
configuration

Each time step
as a row

Figure 6.1: Rule 50 after 10 time steps.

Downey, Think Complexity (Chp. 6)



Rule 30
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What happens it we keep going?

http://mathworld.wolfram.com/Rule30.html



http://mathworld.wolfram.com/Rule30.html
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Wolfram’s CA Classification

* CA can produce surprisingly complex behavior
e \Wolfram classification - 4 classes of 1D CA
e Class | — almost all initial conditions evolve to a

homogeneous state, any initial randomness is
lost (e.g. Rule 0)

e Class Il - Simple pattern,

stable, oscillating, nested i, i,

structure (e .g. Rule 1 8) T R i W

Figure 6.3: Rule 18 after 64 steps.
Downey, Think Complexity (Chp. 6)



Wolfram’s CA Classification

* Class lll - CAs that produce
seemingly random or chaotic

patterns

* Can produce sequences difficult
to distinguish statistically from
random, though the underlying
process Is deterministic

* Class Ill CAs typically do not
produce long-lasting structures
(persisting over many time
steps)

Figure 6.4: Rule 30 after 100 time steps.



Wolfram’s CA Classification

e Class IV - Evolve in

complex ways that
involve a mix of “chaotic”
and “ordered” (Class |l
and Class IlI)

 Have the potential to

that perS|St Over many Figure 6.5: Rule 110 after 100 time steps.
time steps

Downey, Think Complexity (Chp. 6)
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“Spaceships”

Figure 6.6: Rule 110 with random initial conditions and 600 time steps.

Downey, Think Complexity (Chp. 6)



Class |V CA’'s and
computabpllity

 Rule 110 has been proved to be computationally
universal, i.e. Turing complete (Cook M.,1998)

 So is Conway’s Game of Life (classic 2D CA), and
others

e Such CA can be used to compute any computable
function (discuss Church-Turing Thesis)

* Wolfram'’s Conjecture: Every Class IV CA is Turing
complete”

Downey, Think Complexity (Chp. 6), Wolfram’s A New Kind of Science



Cellular Automata

Dimensionality - How many dimensions?

Boundaries - none (infinite domain), periodic
(wrapped), cut-off (edge cells have fewer
neighbors), fixed (edge cells take a fixed state)

Grid size
Grid type - for 2D and higher;

square is typical (& will be o
our focus), but can do others!

https://en.wikipedia.org/wiki/Cellular_automaton



Cellular Automata

State Set - binary, n-ary”
Initial conditions - single cell active, random, etc.

Neighborhood - queen/rook (Moore/Von
Neumann), neighborhood radius

Rules - totalistic (depends only on sum over
neighborhood, e.g. majority rule), symmetric (e.g.
state transition is the same up to rotation)



CA Notation

sii1(x) = F(si(x + dxg), se(x +dxq),...,s¢(x +dr,_1))

e s;(x) is the state of cell x at time t
* N ={dxg,dzq,...,dx,_1}1S the neighborhooad

* Neighborhood usually defined as cells within a
given radius r of x



Parity Rule

Spa1(x Z x + dz;) mod k

* Based on the mod ksum of neighborhood values
(where k is the number of states)

* For binary CA, means they turn on/off based on if
sum is even/odd

Time= 5 Time=10 Time=15 Time=20 Time=25 Time=30



Conway's Game of Life

Possibly the most classic/well-known CA

Large community of researchers/hobbyists, helped
kick-start the field of ‘artificial life’

Produces enormous range of interesting, non-trivial
behaviors

Turing-complete



Conway’'s Game of Lie

* Queen neighborhood (Moore neighborhood)

A dead cell becomes alive if surrounded by exactly
3 live cells

* Aliving cell remains alive it surrounded by 2 or 3
iving cells, otherwise it dies (either due to over- or
underpopulation)



Conway's Game of Life
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Figure 11.6: Typical behavior of the most well-known binary CA, the Game of Life.
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Conway's Game of Life

Epic collection of Conway’s Game of Lite patterns:
https://youtu.be/C2vglCfQawE?t=70

Nicky Case Simulator version: https://ncase.me/sim/?s=conway

Web version to try: https://playgameoflife.com

ca-gameoflife.py in PyCX

Game of life wiki: https://conwaylife.com/wiki/Main_Page

NYT: https://www.nytimes.com/2020/12/28/science/math-
conway-game-ot-lite.htm|



https://youtu.be/C2vgICfQawE?t=70
https://ncase.me/sim/?s=conway
https://playgameoflife.com
https://conwaylife.com/wiki/Main_Page
https://www.nytimes.com/2020/12/28/science/math-conway-game-of-life.html
https://www.nytimes.com/2020/12/28/science/math-conway-game-of-life.html
https://www.nytimes.com/2020/12/28/science/math-conway-game-of-life.html
https://youtu.be/C2vgICfQawE?t=70
https://ncase.me/sim/?s=conway
https://playgameoflife.com
https://conwaylife.com/wiki/Main_Page
https://www.nytimes.com/2020/12/28/science/math-conway-game-of-life.html
https://www.nytimes.com/2020/12/28/science/math-conway-game-of-life.html
https://www.nytimes.com/2020/12/28/science/math-conway-game-of-life.html

Turmites

2D Turing machine generalizations

Named “Turmites” after Turing and the fact that the
write-head of the ‘machine’ moves similarly to a
bug

The ‘turmite’ or ‘ant’

E.g. Langton’s Ant



Applications of CA &
real-world examples

Forest fire models/disease epidemics
Sand heaps/avalanches
Majority rule and voter models

Dittusion-limited aggregation (DLA), percolation,
lattice models of materials

And many more—some more realistic than others

Many ABMs can be viewed as CA, or near-CA (e.qg. if
we allow probabilistic rather than deterministic rules)



CA on seashells

e Conus textile appears to operate with Rule 30 (or
close to it)




CA on lizard scales
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https://www.nature.com/articles/nature22031
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CA & ABM Dynamics

 Not always easy to interpret! Can have many
patterns, as we saw with Game of Life, etc.

* However, sometimes there are major overall
patterns that we can see



Equiliorium Points

* Equilibrium Point - a set of values for the variables
such that the model will stay constant as time

evolves (I.e. all dx/dt = 0)

* Note that all variables must stay constant for the
whole system to be at equilibbrium



Equiliorium Points

 Examples - population growth, etc.

dx
o — =k
1 a0
dx €

 When are these systems at equilibrium? What do
the equilibria represent?



Types of Equilibria

« Stable \‘/
e Unstable A

* Neutral

 Saddle \




Transient vs Long-term

Behavior

portion of the model response that dies out/

goes to zero

* Transient -

* Long-term - persistent model behavioras f — ©
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Phase transitions/
bifurcations

* A phase transition is a “transition of macroscopic
properties of a collective system that occurs when
its environmental or internal conditions are varied”

* More generally, we often see bifurcations/

gualitative changes in behavior as we move across
parameter space



What are bifurcations”

* A bifurcation is a qualitative change in behavior as
parameters are varied

* [he parameter value where this change happens
s called a bifurcation point

e Can create or destroy fixed points, change
stablility, induce oscillations, & more



Qualitative changes in
pbehavior: population collapse

* Advanced fishing trawlers
introduced in 50’s/60’s

e Cod fishery collapse

e 1992 moratorium = 1952

300,000
. 200,000
* However, still not recovered 10000

(only 10-33% of original stock)

* What happened? Year

http://www.nature.com/nclimate/journal/v1/n4/pdf/nclimate1146.pdf



Qualitative changes in
pbehavior

Development of resistance in bacteria”? Biturcation or
just multiple equilibria”

Onset of cancer—can think of as a bifurcation from
controlled growth & death (equilibrium) to uncontrolled
growth

Wide range of other signaling mechanisms controlling
cell dynamics can be framed this way (cell cycling,
apoptosis, & more)

Switches between brain states—e.g. sleep, epilepsy



Epileptic Seizure EEG
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Not Just temporal changes:
vegetation patterns!

e Pattern formation in vegetation

 Changes in elevation/moisture/etc. can
cause surprising changes in plant patterns
across space!
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Vegetation patterns

le.com/maps/@11.1596025,28.2570965,8746m/data=!3m1!1e



https://www.google.com/maps/@11.1596025,28.2570965,8746m/data=!3m1!1e3
https://www.google.com/maps/@11.1596025,28.2570965,8746m/data=!3m1!1e3
http://www.apple.com
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Disease dynamics

 The most classic bifurcation point in infectious
disease epidemiology: Ro =1

 When Ro < 1 the disease-free equilibrium (DFE)
s stable (outbreak dies out)

 When Ro > 1, it Is unstable (epidemic!)
 Basically all intervention efforts & vaccine

campaigns are trying to push us across a
bifurcation point to eliminate disease



CA & ABM models with
phase transitions/bifurcations

* Many examples even if not formally proven to change
stability etc. (e.g. Schelling, voting model, etc.)

* [ry out together:
* Forest fire/percolation model
* Host pathogen model

» Other useful concepts from dynamical systems:
basins of attraction, bistability, etc.



For next time...

* Reading
 Sayama Chapter 11
 Think Complexity Chapter 6

o We'll discuss 2D CA, how to build CA, variations on
CA, and theory for how to analyze the complexity
and dynamics of CA



