Lecture 6: Introduction to Networks

Complex Systems 530

Outline

- ABM & networks
- Types of dynamic models using networks
- Basic terminology
- Network metrics
- Random networks

Networks

- Very flexible! Can capture many kinds of relationships, from concrete to abstract
- Network theory (graph theory) has a long history in math & computer science literature
- Many models can be written or thought of as a network & this perspective can often help understand the model (e.g. there is a whole huge theory just on networks of ODEs)

Networks

- Links between webpages, twitter followers, facebook friends, common use of hashtags/interests/etc.
- Family trees, friendship networks, contact networks, collaboration networks (mention Erdös & Bacon Numbers)
- Food webs among species, gene regulatory networks
- Diplomatic relationships, financial relationships
- Concept maps, causal diagrams, language/text, etc!

However...

- Just because you can think of a network representation of a system does not make it a meaningful representation of that system
- Need to consider what the network perspective gains you & how it can be useful

Networks & ABM

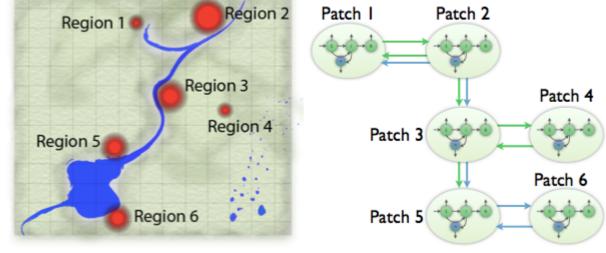
- Networks allow us to examine non-homogeneous interaction structures in emergent processes
 - Compare to grids or random/complete mixing (also types of networks!)
- Understanding of networks often proves to be important in computational model of complex systems
- Many network models are ABM, and many other kinds of models can be cast as network models too

Types of network dynamics

- **Dynamics on networks**: models where the processes of interest occur over a fixed network structure
- **Dynamics of networks**: models of the dynamic changes over time of the network topology itself
- Adaptive networks: models looking at the interplay of the two (both the processes on the network, and how the network changes)

Networks

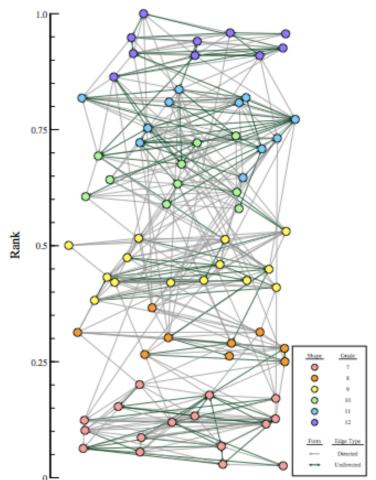
Network (graph)
= nodes & edges



- Node (vertex) an object, can be people, communities, locations, water sources, signaling molecules, genes, etc.
- Edge a connection between two nodes

Types of Networks

- Directed graph edges have a direction associated with them (e.g. friendships that go one way)
 - Edges sometimes called arcs
 - E.g. friendship networks & social status (Newman & Ball)
 - Disease Transmission

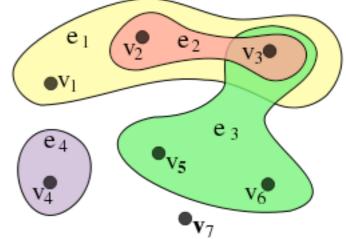


Types of Networks

- Weighted graph assigns a number (weight) to each edge/node
 - E.g. association strength, parameter value, disease status
 - Weighting can also be thought of as a type or state instead of number (e.g. S, I, R, or cancer stage, etc.)
 - One of the most common for modeling
 - Can have weighted edges, nodes, or both

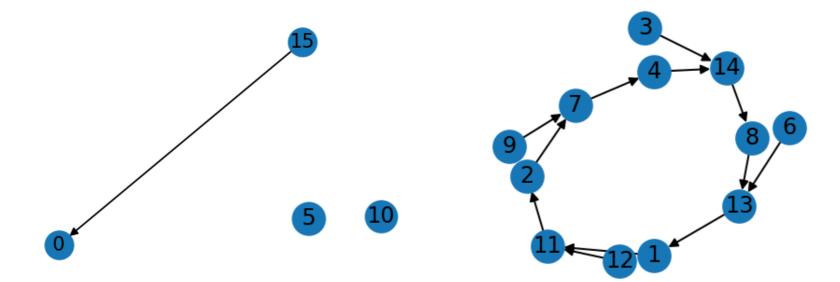
Types of Networks

- Multigraph multiple edges allowed between nodes
- Hypergraph edges can have more than two vertices attached



Key definitions/vocab

- Graphs can be connected or disconnected
- Connected graph Graph in which every node is "reachable" from every other
- Connected component Subgraph that is connected w/in itself but not the rest of the graph



Key definitions/vocab

6

3

5

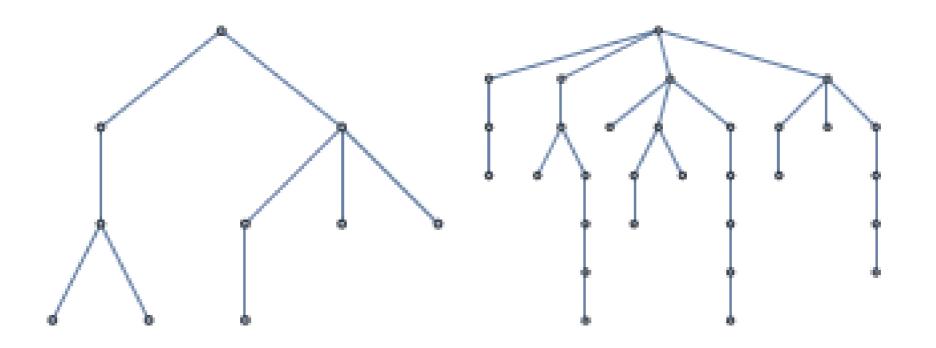
- Loop edge connected to same vertex at both ends
- Subgraph a subset of a graph
- Neighborhood of node x nodes that are adjacent to x
 - Often want to use neighborhood to predict effects on individual, e.g. infectious disease, behavioral influence

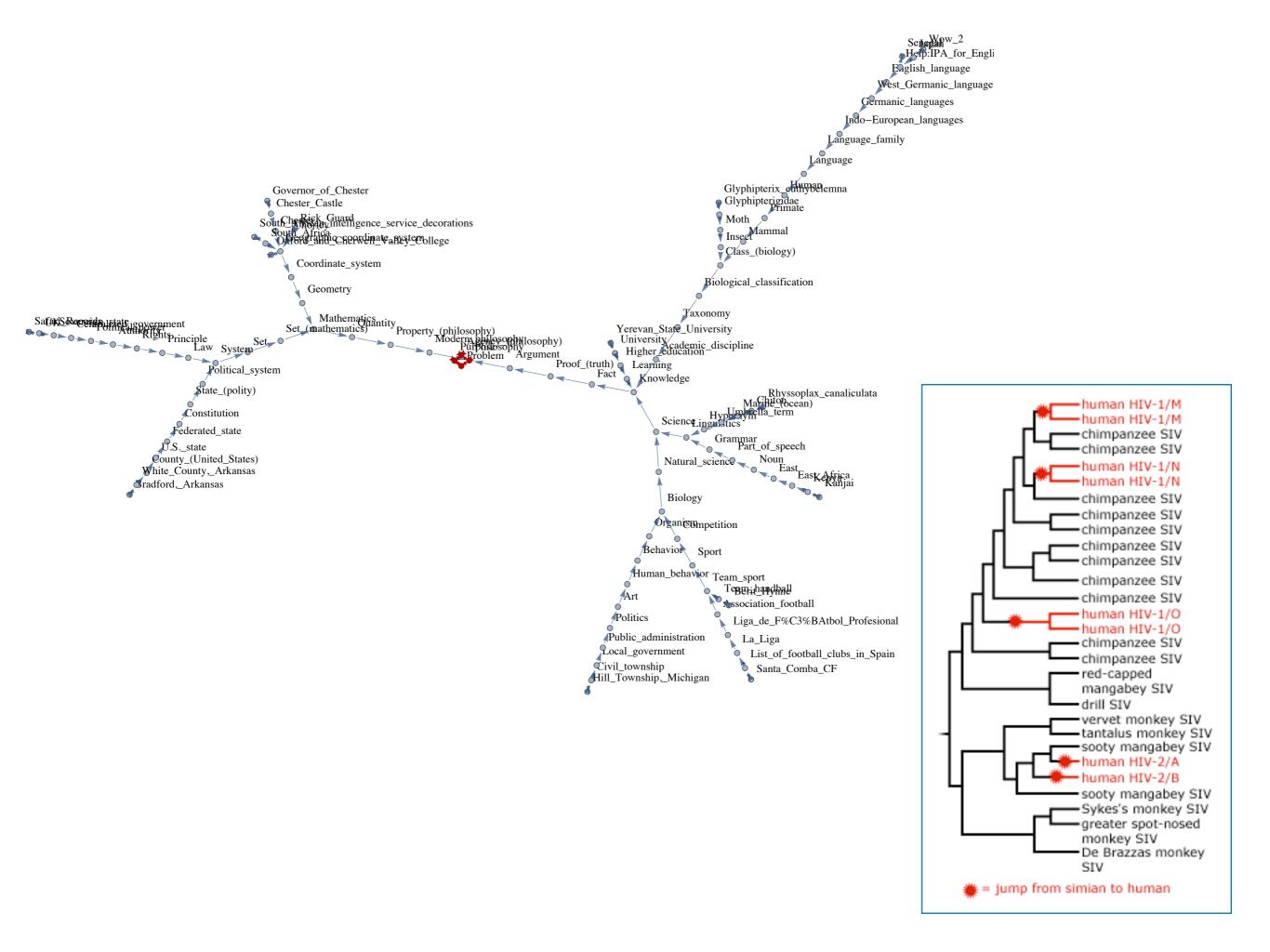
Key definitions/vocab

- Walk List of edges sequentially connected to form a continuous route
- Path Walk that doesn't visit any node twice
- Cycle (sometimes called a circuit) Walk that starts and ends at same node (called a simple cycle if no repeated nodes)

Trees & Forests

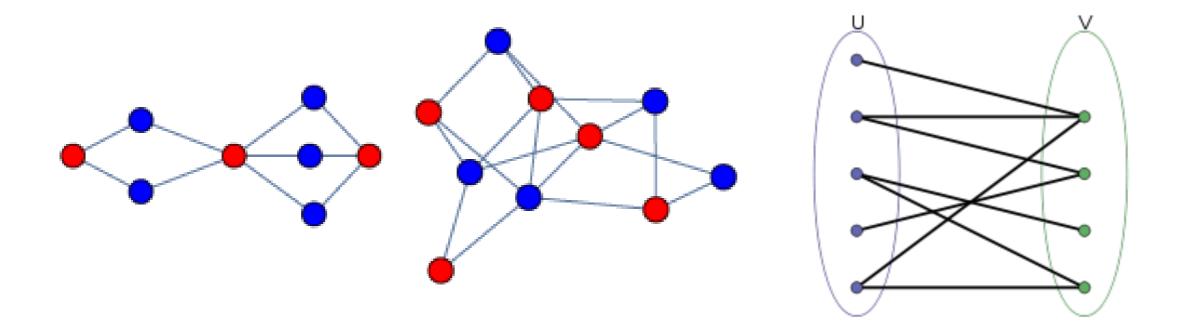
- Tree connected graph with no cycles
- Forest multiple trees





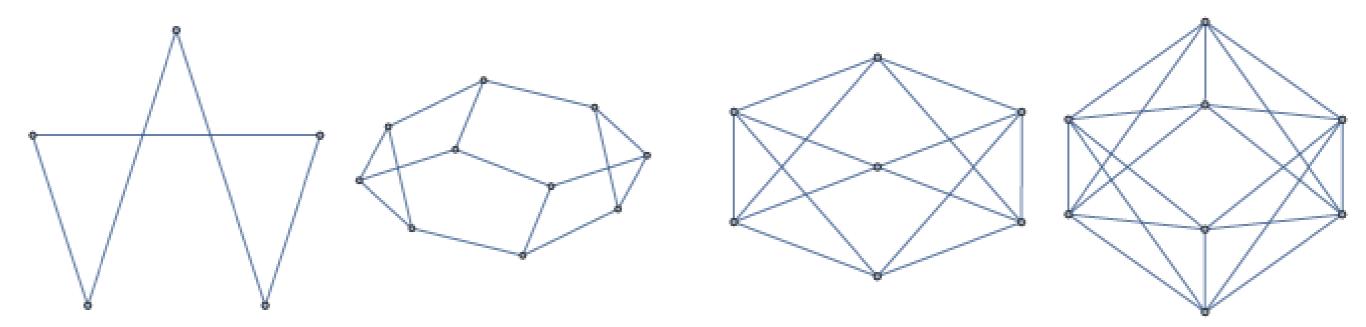
Bipartite (n-partite) graph

- Can be partitioned into two (n) groups, with edges only between the two groups, not within them
 - E.g. heterosexual sexual network



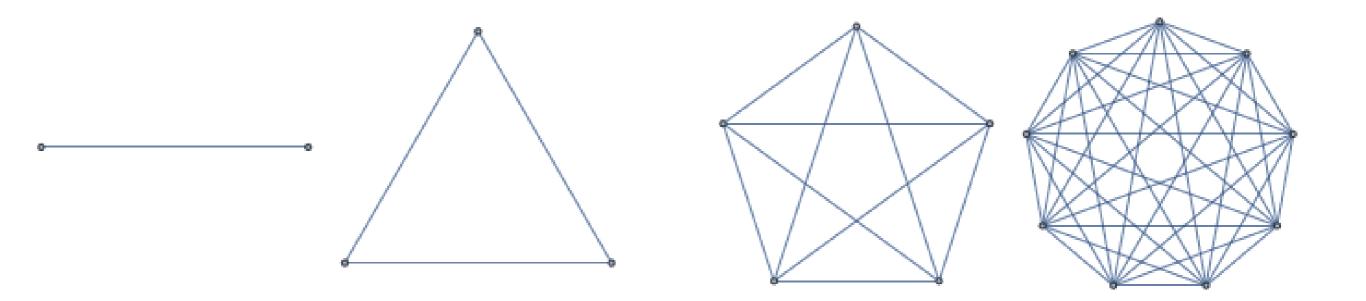
Regular graph

• All nodes have the same degree

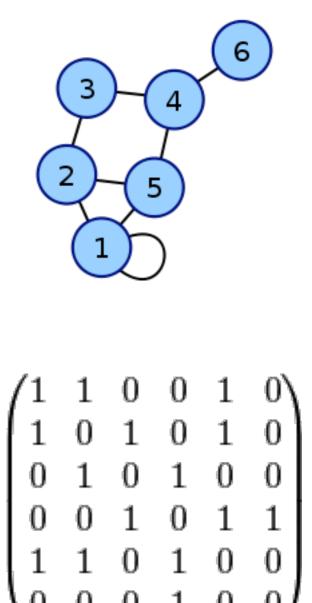


Complete graph

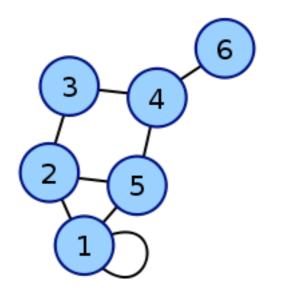
- All-to-all connectivity
- Can sometimes be used to represent homogeneous mixing



- Matrix representing the graph structure
- Can reconstruct the graph from the matrix & vice versa
- Pattern, eigenvalues, etc. of adjacency matrix can often tell you about the graph

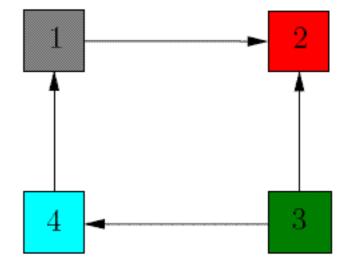


- Undirected graph adjacency matrix is symmetric
- Directed graph asymmetric
- Weighted graph takes non 0/1 values to match edge weights



 $\begin{pmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$

- Undirected graph adjacency matrix is symmetric
- Directed graph asymmetric
- Weighted graph takes non 0/1 values to match edge weights



$$A = \left(\begin{array}{cccc} 0 & 0.5 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0.75 \\ 0.3 & 0 & 0 & 0 \end{array} \right)$$

- Many useful properties particularly for huge graphs where it's hard to test visually or by checking connectivity
- (i,j) spot of A^k gives paths of length k from i to j
- Two graphs G1 and G2 are 'the same' (isomorphic) if $A_1 = P A_2 P^{-1}$
- Can use to find number of connected components, bipartite-ness, etc.

Network Metrics

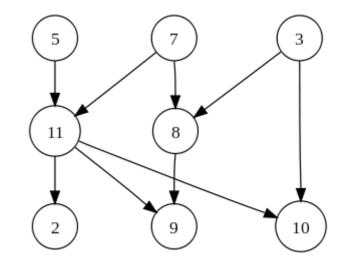
 Wide range of measures, of varying levels of complexity, that are used to characterize networks at both the "micro" (i.e. node and edge) and "macro" (i.e. network) levels

Network Metrics

- Size Number of nodes and edges in a network
- Density Fraction of all realized edges relative to possible edges
 - n = number of nodes
 - m = number of edges
 - D = 2m/n(n-1) (for undirected graph)

Degree

• **Degree** - number of edges attached to a node



- "Egocentric" social network
- In-degree number of incoming edges
- Out-degree number of outgoing edges

Network Centrality

- How central or important is a particular node? How to find "important" nodes?
- Many different approaches & types of centrality
- Degree centrality of a node is just the degree (can also use indegree & outdegree)

Closeness Centrality

- Closeness centrality of node x measures shortest paths from x to other nodes
 - Idea is that the easier it is to get from one node to all other nodes quickly the more 'central' it is

•
$$C(i) = \frac{n}{\sum_{j} d(i,j)}$$
 $C(i) = \frac{n-1}{\sum_{j \neq i} d(i,j)}$

Betweenness Centrality

- Betweenness Centrality measures how 'bridgey' the node is, i.e. if a node is an important bridge from one set of nodes to another, it is more central
 - Betweenness centrality of node x determine how often the shortest path between two nodes uses x

$$B(i) = \sum_{s,t} \frac{n_{st}^i}{g_{st}}$$

where n_{st}^{i} is the number of shortest paths from s to t that pass through i, and g_{st} is the total number of shortest path routes from s to t



Eigenvector Centrality

- Centrality is based on centrality of your neighbors (connections to highly central individuals increases your centrality)
- Closely related to Google pagerank
- This works out to be the eigenvector of the largest eigenvalue of the adjacency matrix

Why eigenvector?

• Suppose the centrality *x* for each node *i* is proportional to the sum of it's neighbors' centralities. We can write that like this:

$$x_i = k \sum_j A_{ij} x_j$$
 where A is the adjacency matrix

- This is just the equation for a matrix times a vector! We can rewrite as: $\mathbf{x} = kA\mathbf{x}$
- This is the equation for eigenvectors and eigenvalues! If we let $\lambda = 1/k$ then we have:

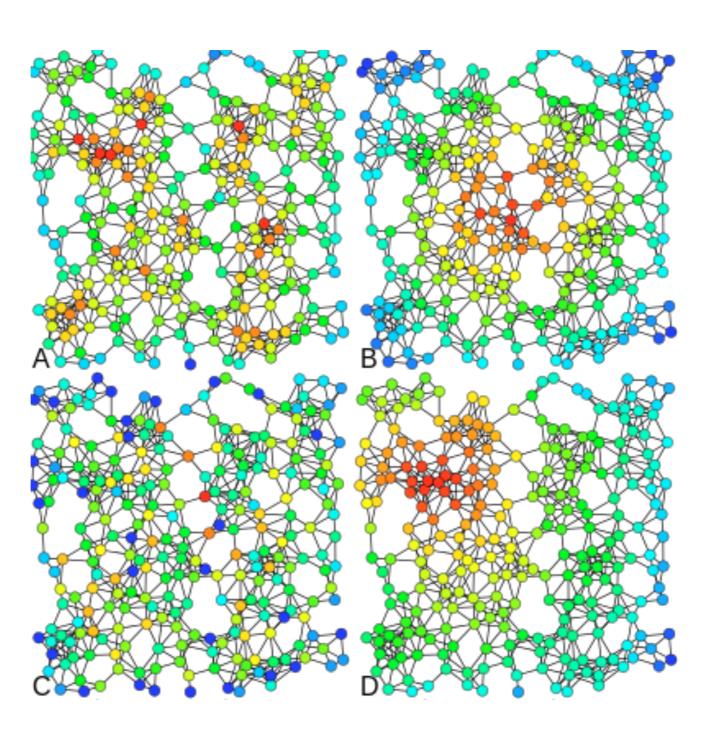
$$A\mathbf{x} = \lambda \mathbf{x}$$

Eigenvector centrality

- Eigenvector centrality of a node x_i is the ith entry of the eigenvector corresponding to the largest eigenvalue
- The eigenvector for the largest eigenvalue ensures that all the eigenvector entries are non-negative (Frobenius–Perron theorem)

Degree

Betweenness

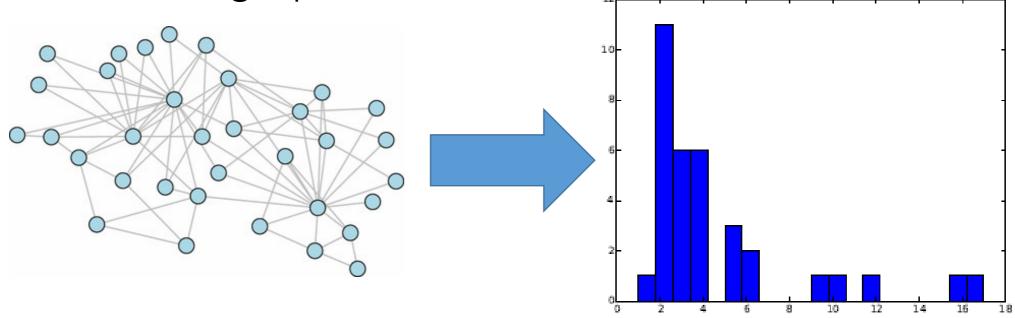


Closeness

Eigenvector

Degree distribution

- Degree sequence List of degrees for all nodes in a graph
- Often use this to determine the degree distribution (often these are treated as the same)
- Degree sequence/distribution can tell you a lot about structure of graph

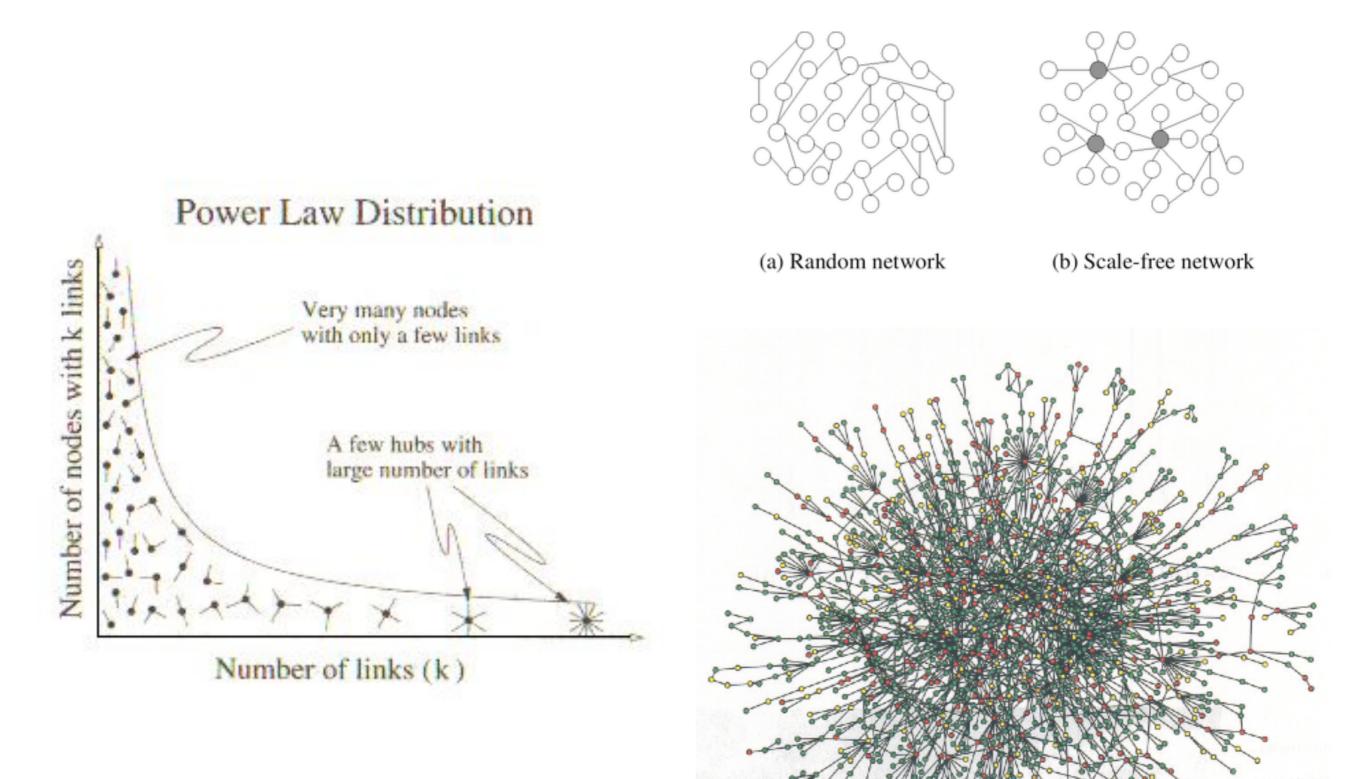


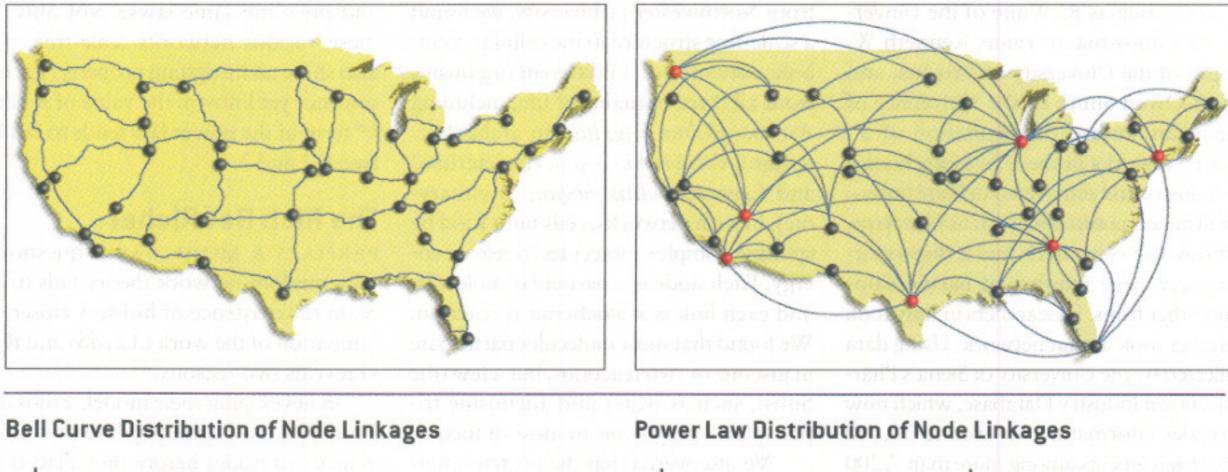
Power Law degree distribution

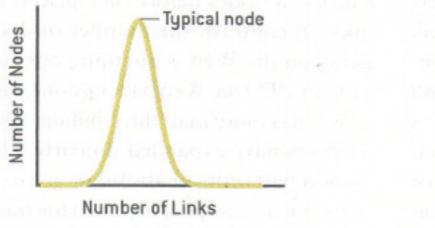
• Scale free networks - power law degree distribution

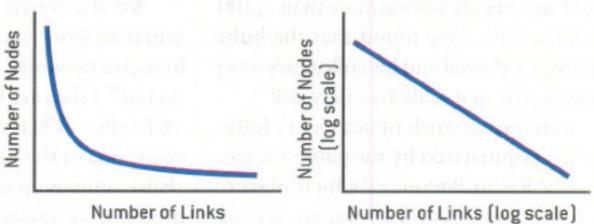
 $P(k) \sim k^{-\gamma}$

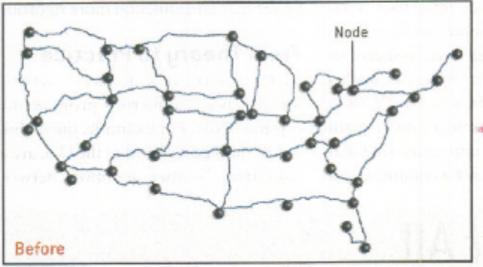
- Long tail results in both very sparse nodes and hub nodes
- Many biological networks, social networks, WWW, etc. are scale free





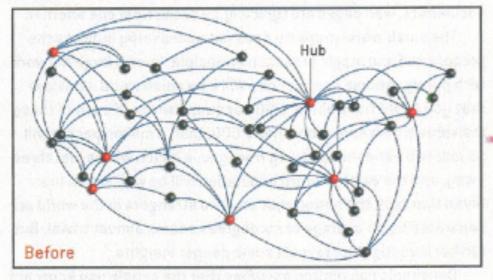


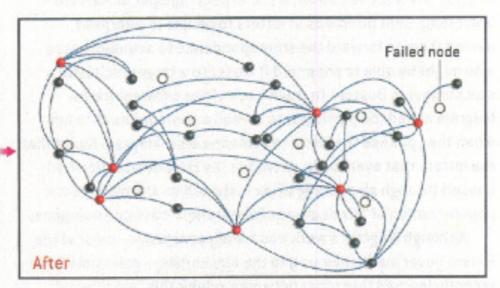




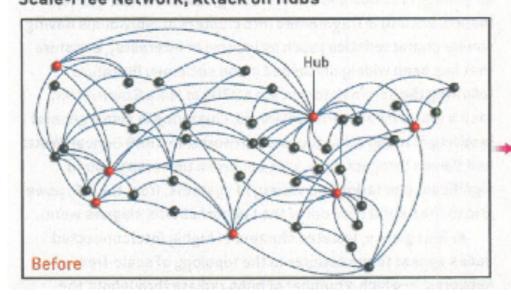
After

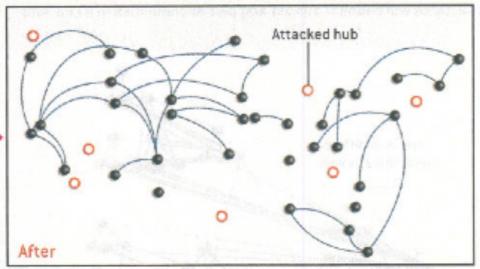
Scale-Free Network, Accidental Node Failure





Scale-Free Network, Attack on Hubs



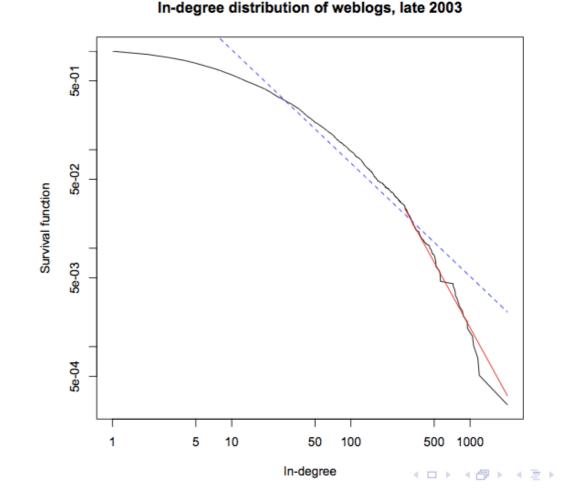


Scale Free Networks

- Scale free networks are robust to random failures (e.g. mutations in a gene)
- However, vulnerable to targeted attacks on hubs

Scale Free Networks

- However, lots of things look linear-ish on a log-log scale...
- Many suggest some abuse of power law/scale free idea
- Probably a lot of these are just heavy-tailed



Clustering in networks

Clustering in networks

- Many different ways to look at clustering
- How do node traits (degree, covariates) cluster based on edges? E.g. do smokers tend to be friends with other smokers? Do individuals cluster by popularity?
- Community detection finding clusters (groups) of nodes that are highly connected within the group and less connected between groups (i.e. clustering, where similarity is based on connectivity)

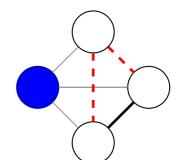
Clustering Coefficient

- Based on the number of triangles in the network c = 1
- How many of my friends are also friends?
- Global clustering coefficient

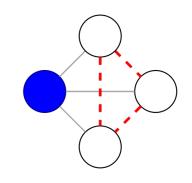
 $C = \frac{\text{number of triangles}}{\text{number of possible triangles}}$

• Local clustering coefficient

 $C_i = \frac{\text{actual edges between neighbors of } v_i}{\text{possible edges between neighbors of } v_i} = \frac{e_{jk} : v_j, v_k \in N_i | e_{jk} \in E}{|N_i|(|N_i| - 1)/2}$



c = 1/3

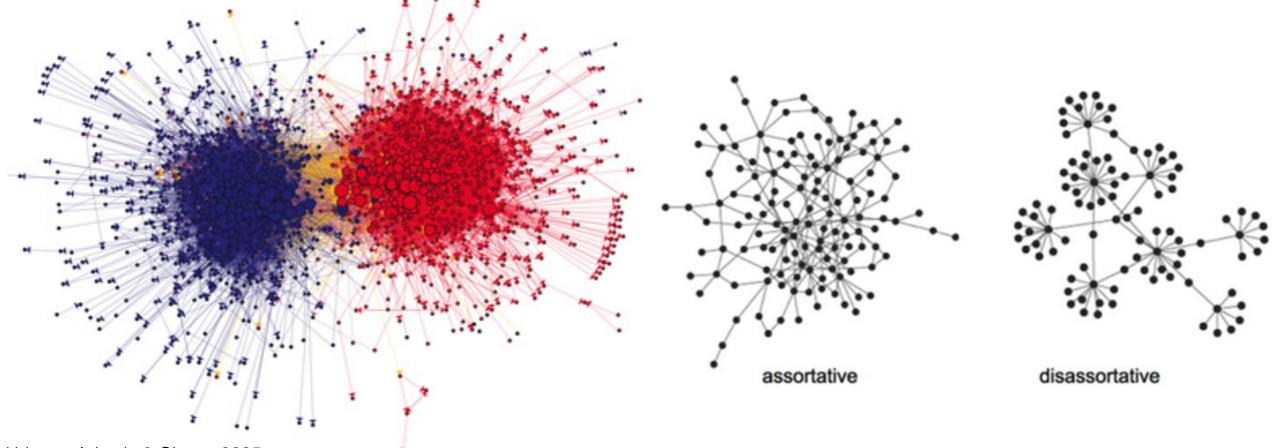


c = 0

- **Assortativity** measures network-level tendency for nodes to to attach to similar nodes
 - Similarity can be defined by node attributes, degree, etc.
- Calculate fraction of edges between nodes of the same type/value, compare to what would be expected from a random network
- Ranges from -1 (dissassortative) to 1 (assortative)
 - But min value (most dissassortative) is between -1 and 0 depending on the composition of the network

M. E. J. Newman, Mixing patterns in networks Physical Review E, 67 026126, 2003

- Heterosexual networks highly dissassortative by gender
- Social/sexual networks often assortative on a range of demographic, degree, behavioral traits - 'birds of a feather flock together'



Political blogs - Adamic & Glance 2005

- Consider a case where we have discrete characteristics on the nodes
- Define a mixing matrix with entries e_{ij} given by the fraction of the total edges linking type i to type j
- Let a_i and b_i be the total fractions of each end type that we have ($a_i = b_i$ for undirected graphs)

• Note that
$$\sum_{ij} e_{ij} = 1$$
, $\sum_{j} e_{ij} = a_i$, $\sum_{i} e_{ij} = b_j$

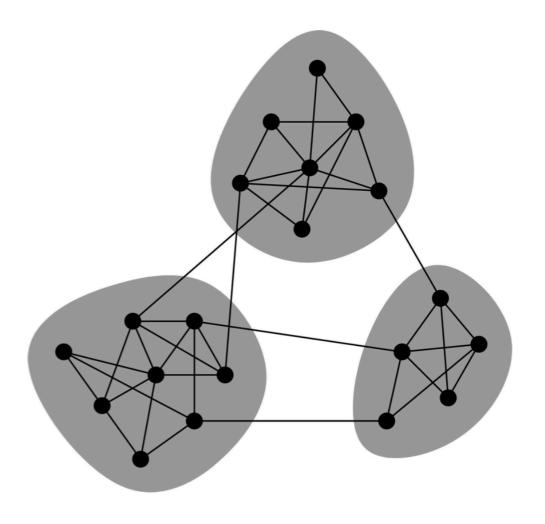
 Defined based on a mixing matrix - entries are the fraction of edges in a network linking type i to type j

$$r = \frac{\sum_{i} e_{ii} - \sum_{i} a_{i}b_{i}}{1 - \sum_{i} a_{i}b_{i}} = \frac{\mathrm{Tr}\mathbf{e} - ||\mathbf{e}^{2}||}{1 - ||\mathbf{e}^{2}||},$$

 For degree assortativity (and other scalar variables), assortativity is the Pearson correlation coefficient of degree between pairs of linked nodes

Modularity

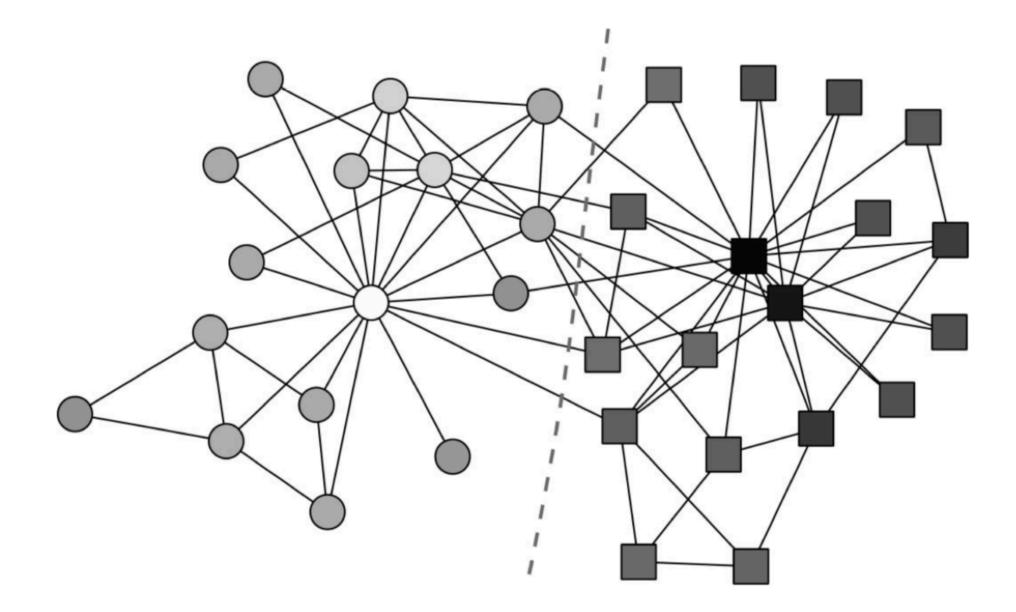
- How to decide communities (clusters) in a network?
- We want communities to have more in-group edges than between-group edges
- We could minimize between group edges, but this would lead to just putting all nodes in one community



Modularity

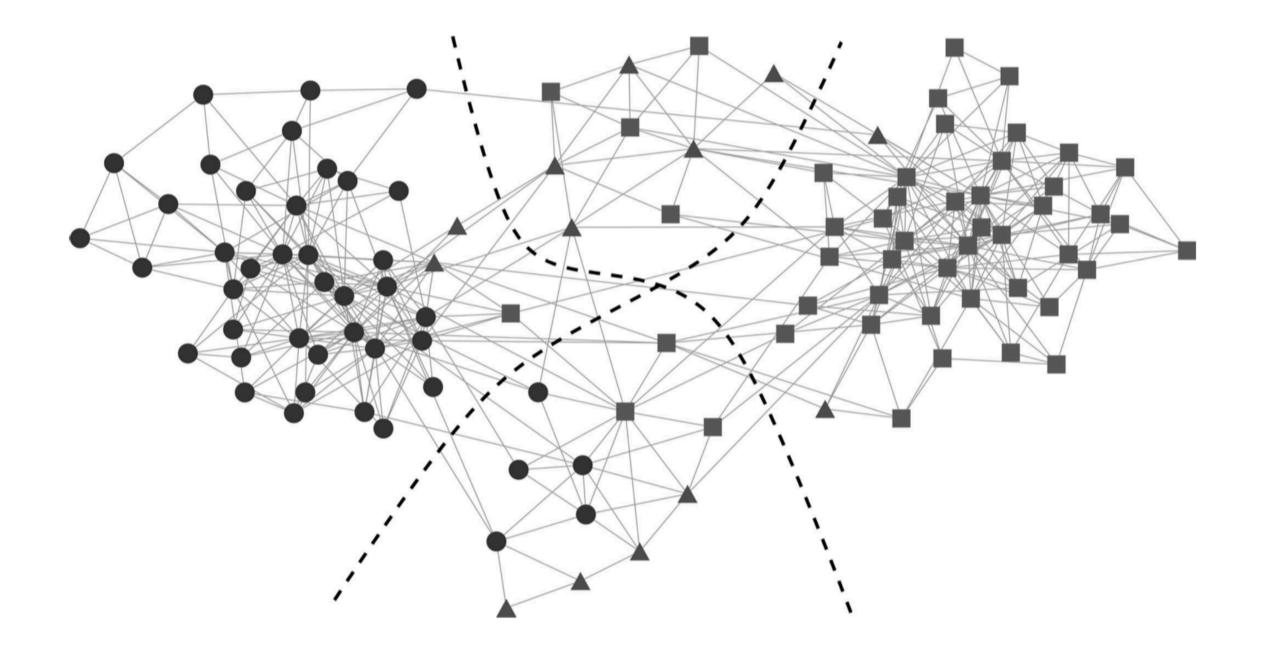
- Modularity compares observed community edges to what would be expected at random
- Modularity is the fraction of within-group edges minus the fraction expected at random (if degree conserved but edges are randomized)
- Modularity-based community detection: find community groupings that maximize modularity

Karate club example



Newman, Mark EJ. "Modularity and community structure in networks." PNAS 103.23 (2006): 8577-8582.

Political books



Newman, Mark EJ. "Modularity and community structure in networks." PNAS 103.23 (2006): 8577-8582.

Modularity

- Can be slow/difficult to maximize—spectral methods have made much faster
- Resolution limit as the network grows larger, it is harder for modularity-based community detection methods to find small communities

Betweenness Methods for Clustering

- Since someone brought up in class—idea is to form communities by removing highest betweenness centrality nodes one at a time, where community formed when the network becomes disconnected
- Will generate a hierarchical structure of communities—can be advantageous! (also see hierarchical clustering methods)
- But also does not tend to perform as well as modularity or information theory based methods in tests
- <u>https://colab.research.google.com/drive/</u> <u>1FMJatlYt0es1XbghNJH4h-kOEgiloH6i?</u> <u>authuser=1#scrollTo=QloVhQdoBwkP</u>

For next time...

- Reading
 - Sayama Chapter 15
 - Sayama Chapter 17
 - Think Complexity Chapter 2