#### Lecture 6: Introduction to Networks

Complex Systems 530

#### Outline

- ABM & networks
- Types of dynamic models using networks
- Basic terminology
- Network metrics
- Random networks

#### Networks

- Very flexible! Can capture many kinds of relationships, from concrete to abstract
- Network theory (graph theory) has a long history in math & computer science literature
- Many models can be written or thought of as a network & this perspective can often help understand the model (e.g. there is a whole huge theory just on networks of ODEs)

#### Networks

- Links between webpages, twitter followers, facebook friends, common use of hashtags/interests/etc.
- Family trees, friendship networks, contact networks, collaboration networks (mention Erdös & Bacon Numbers)
- Food webs among species, gene regulatory networks
- Diplomatic relationships, financial relationships
- Concept maps, causal diagrams, language/text, etc!

#### However...

- Just because you can think of a network representation of a system does not make it a meaningful representation of that system
- Need to consider what the network perspective gains you & how it can be useful

#### Networks & ABM

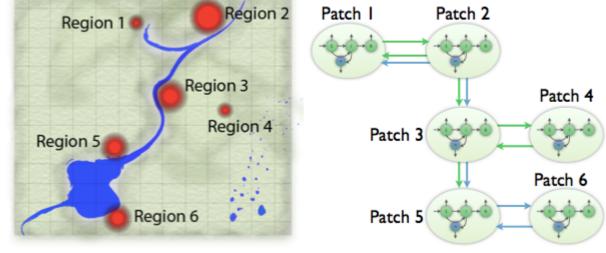
- Networks allow us to examine non-homogeneous interaction structures in emergent processes
  - Compare to grids or random/complete mixing (also types of networks!)
- Understanding of networks often proves to be important in computational model of complex systems
- Many network models are ABM, and many other kinds of models can be cast as network models too

#### Types of network dynamics

- **Dynamics on networks**: models where the processes of interest occur over a fixed network structure
- **Dynamics of networks**: models of the dynamic changes over time of the network topology itself
- Adaptive networks: models looking at the interplay of the two (both the processes on the network, and how the network changes)

#### Networks

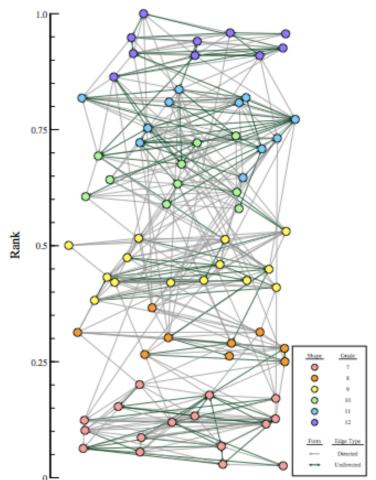
Network (graph)
= nodes & edges



- Node (vertex) an object, can be people, communities, locations, water sources, signaling molecules, genes, etc.
- Edge a connection between two nodes

# Types of Networks

- Directed graph edges have a direction associated with them (e.g. friendships that go one way)
  - Edges sometimes called arcs
  - E.g. friendship networks & social status (Newman & Ball)
  - Disease Transmission

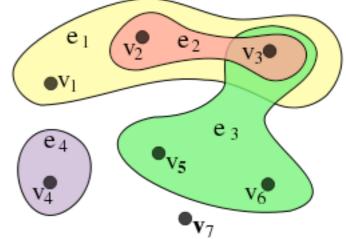


# Types of Networks

- Weighted graph assigns a number (weight) to each edge/node
  - E.g. association strength, parameter value, disease status
  - Weighting can also be thought of as a type or state instead of number (e.g. S, I, R, or cancer stage, etc.)
  - One of the most common for modeling
  - Can have weighted edges, nodes, or both

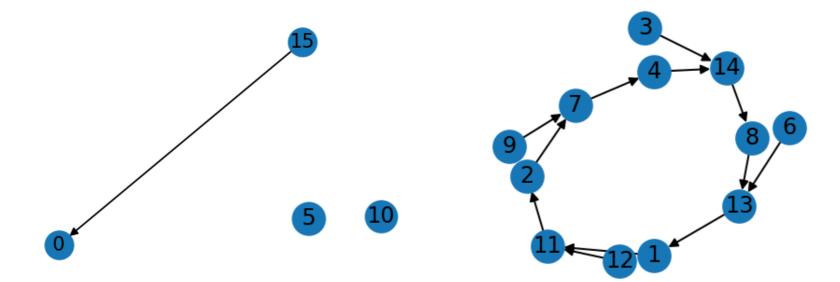
# Types of Networks

- Multigraph multiple edges allowed between nodes
- Hypergraph edges can have more than two vertices attached



### Key definitions/vocab

- Graphs can be connected or disconnected
- Connected graph Graph in which every node is "reachable" from every other
- Connected component Subgraph that is connected w/in itself but not the rest of the graph



#### Key definitions/vocab

6

3

5

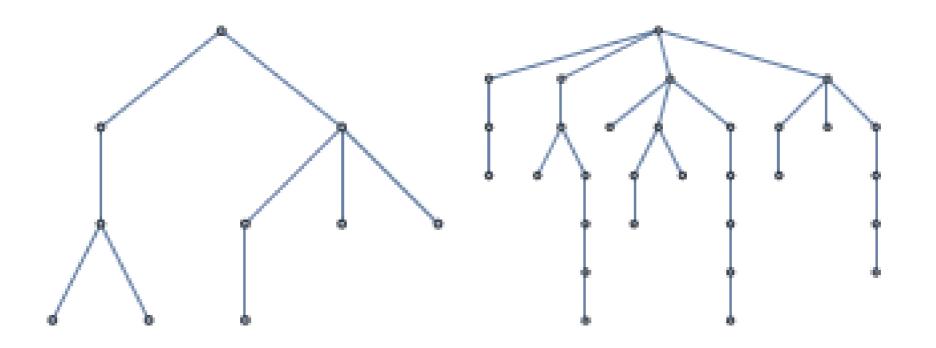
- Loop edge connected to same vertex at both ends
- Subgraph a subset of a graph
- Neighborhood of node x nodes that are adjacent to x
  - Often want to use neighborhood to predict effects on individual, e.g. infectious disease, behavioral influence

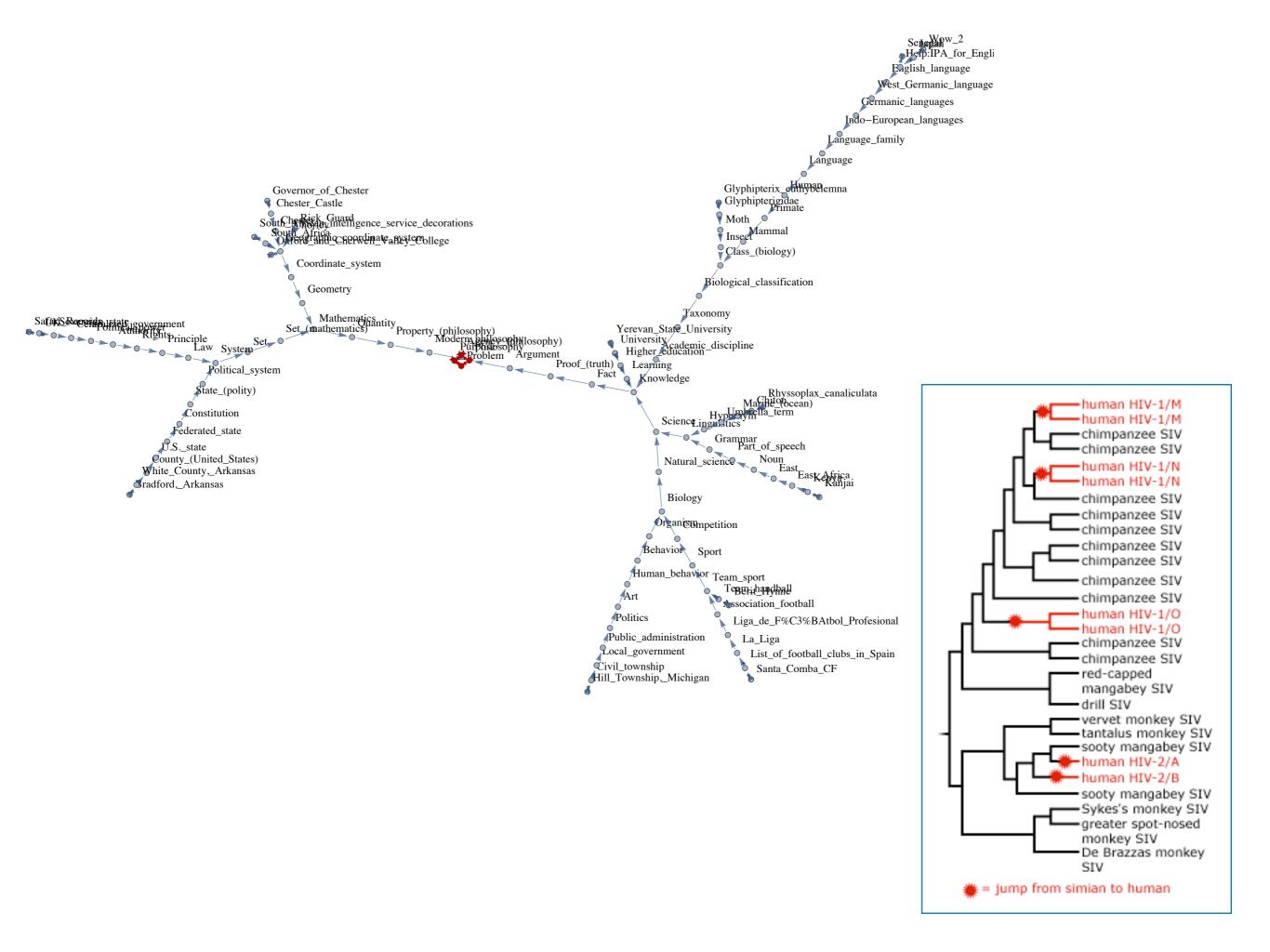
#### Key definitions/vocab

- Walk List of edges sequentially connected to form a continuous route
- Path Walk that doesn't visit any node twice
- Cycle (sometimes called a circuit) Walk that starts and ends at same node (called a simple cycle if no repeated nodes)

#### Trees & Forests

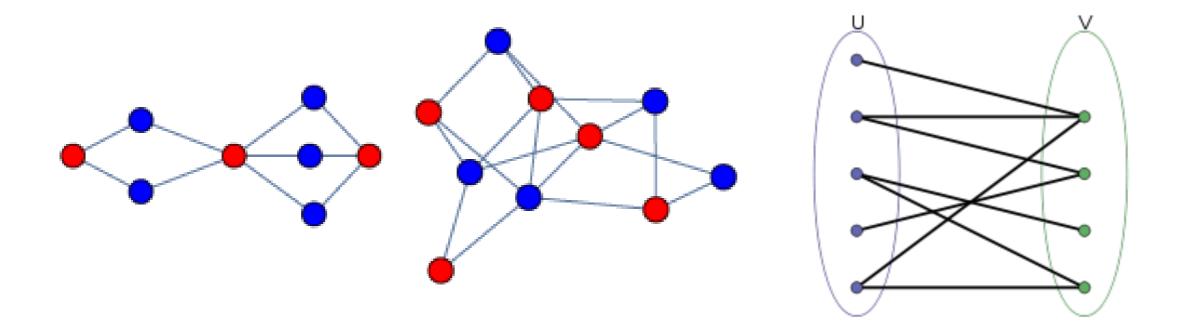
- Tree connected graph with no cycles
- Forest multiple trees





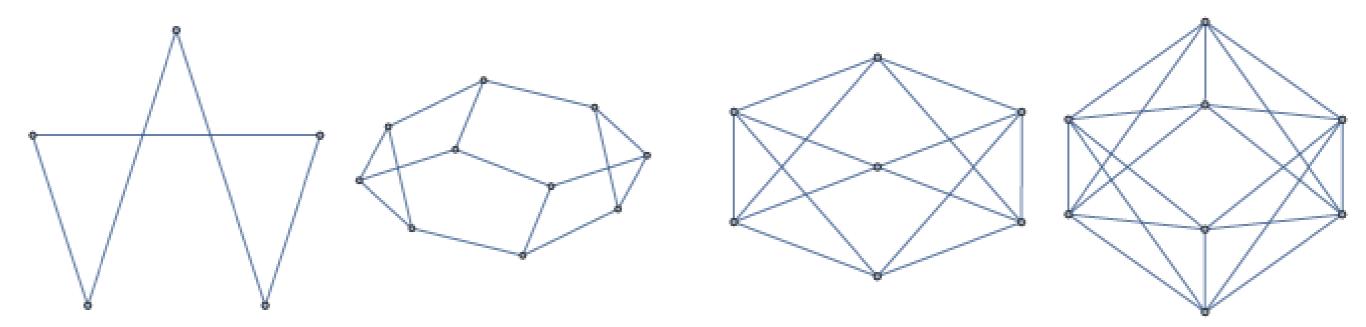
# Bipartite (n-partite) graph

- Can be partitioned into two (n) groups, with edges only between the two groups, not within them
  - E.g. heterosexual sexual network



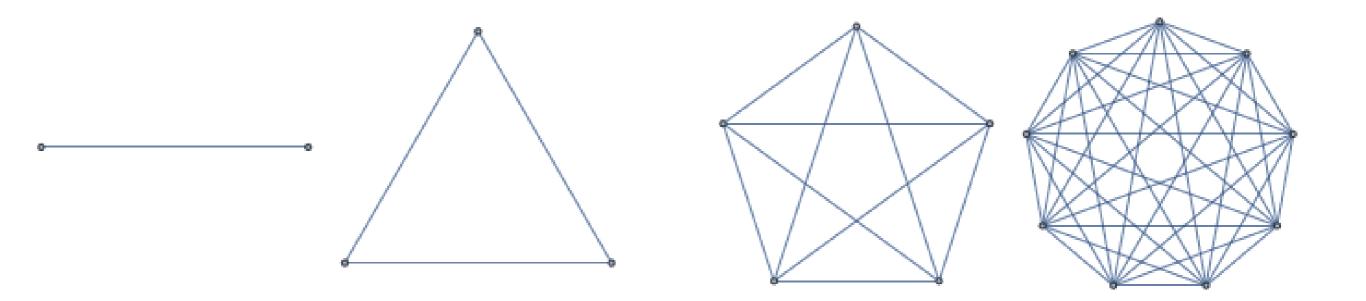
### Regular graph

• All nodes have the same degree

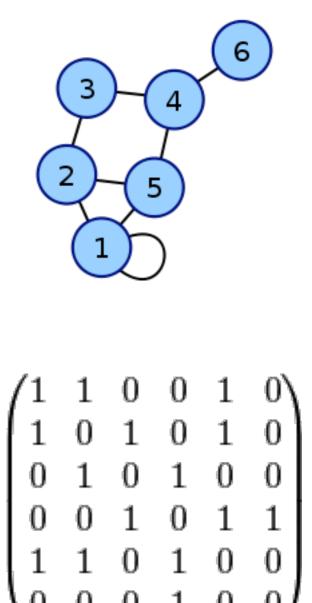


# Complete graph

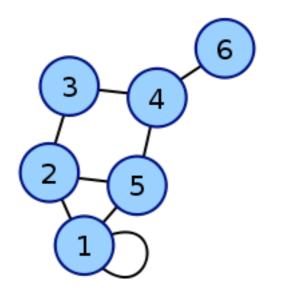
- All-to-all connectivity
- Can sometimes be used to represent homogeneous mixing



- Matrix representing the graph structure
- Can reconstruct the graph from the matrix & vice versa
- Pattern, eigenvalues, etc. of adjacency matrix can often tell you about the graph

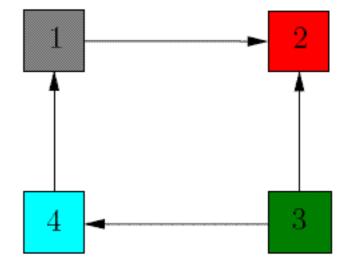


- Undirected graph adjacency matrix is symmetric
- Directed graph asymmetric
- Weighted graph takes non 0/1 values to match edge weights



 $\begin{pmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$ 

- Undirected graph adjacency matrix is symmetric
- Directed graph asymmetric
- Weighted graph takes non 0/1 values to match edge weights



$$A = \left( \begin{array}{cccc} 0 & 0.5 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0.75 \\ 0.3 & 0 & 0 & 0 \end{array} \right)$$

- Many useful properties particularly for huge graphs where it's hard to test visually or by checking connectivity
- (i,j) spot of  $A^k$  gives paths of length k from i to j
- Two graphs G1 and G2 are 'the same' (isomorphic) if  $A_1 = P A_2 P^{-1}$
- Can use to find number of connected components, bipartite-ness, etc.

#### Network Metrics

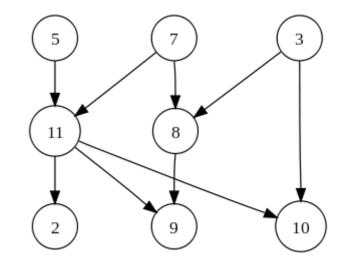
 Wide range of measures, of varying levels of complexity, that are used to characterize networks at both the "micro" (i.e. node and edge) and "macro" (i.e. network) levels

#### Network Metrics

- Size Number of nodes and edges in a network
- Density Fraction of all realized edges relative to possible edges
  - n = number of nodes
  - m = number of edges
  - D = 2m/n(n-1) (for undirected graph)

Degree

• **Degree** - number of edges attached to a node



- "Egocentric" social network
- In-degree number of incoming edges
- Out-degree number of outgoing edges

### Network Centrality

- How central or important is a particular node? How to find "important" nodes?
- Many different approaches & types of centrality
- Degree centrality of a node is just the degree (can also use indegree & outdegree)

#### Closeness Centrality

- Closeness centrality of node x measures shortest paths from x to other nodes
  - Idea is that the easier it is to get from one node to all other nodes quickly the more 'central' it is

• 
$$C(i) = \frac{n}{\sum_{j} d(i,j)}$$
  $C(i) = \frac{n-1}{\sum_{j \neq i} d(i,j)}$ 

#### Betweenness Centrality

- Betweenness Centrality measures how 'bridgey' the node is, i.e. if a node is an important bridge from one set of nodes to another, it is more central
  - Betweenness centrality of node x determine how often the shortest path between two nodes uses x

$$B(i) = \sum_{s,t} \frac{n_{st}^i}{g_{st}}$$

where  $n_{st}^{i}$  is the number of shortest paths from s to t that pass through i, and  $g_{st}$  is the total number of shortest path routes from s to t



# Eigenvector Centrality

- Centrality is based on centrality of your neighbors (connections to highly central individuals increases your centrality)
- Closely related to Google pagerank
- This works out to be the eigenvector of the largest eigenvalue of the adjacency matrix

# Why eigenvector?

• Suppose the centrality *x* for each node *i* is proportional to the sum of it's neighbors' centralities. We can write that like this:

$$x_i = k \sum_j A_{ij} x_j$$
 where A is the adjacency matrix

- This is just the equation for a matrix times a vector! We can rewrite as:  $\mathbf{x} = kA\mathbf{x}$
- This is the equation for eigenvectors and eigenvalues! If we let  $\lambda = 1/k$  then we have:

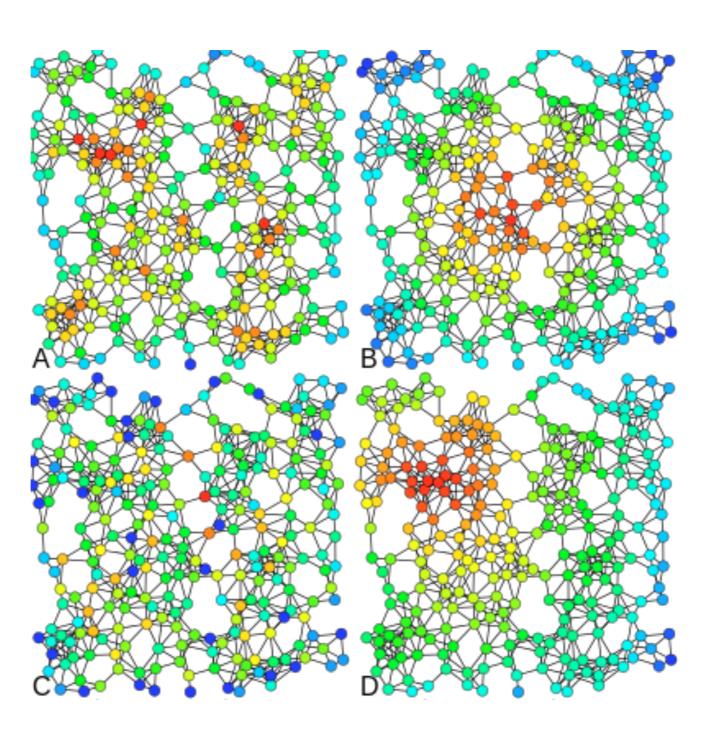
$$A\mathbf{x} = \lambda \mathbf{x}$$

# Eigenvector centrality

- Eigenvector centrality of a node x<sub>i</sub> is the ith entry of the eigenvector corresponding to the largest eigenvalue
- The eigenvector for the largest eigenvalue ensures that all the eigenvector entries are non-negative (Frobenius–Perron theorem)

#### Degree

#### Betweenness

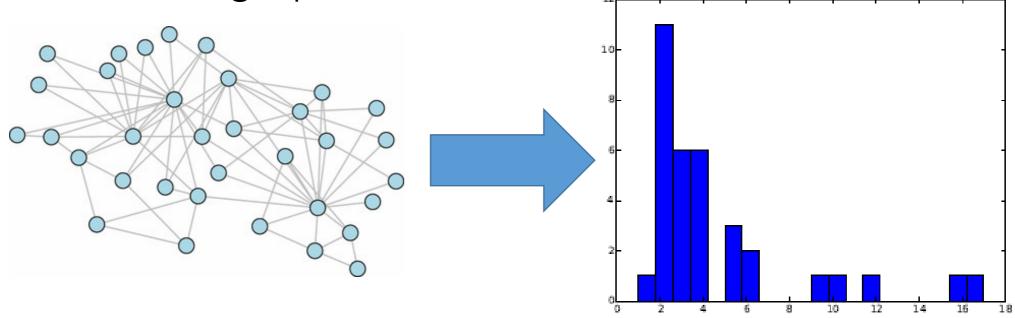


#### Closeness

#### Eigenvector

### Degree distribution

- Degree sequence List of degrees for all nodes in a graph
- Often use this to determine the degree distribution (often these are treated as the same)
- Degree sequence/distribution can tell you a lot about structure of graph

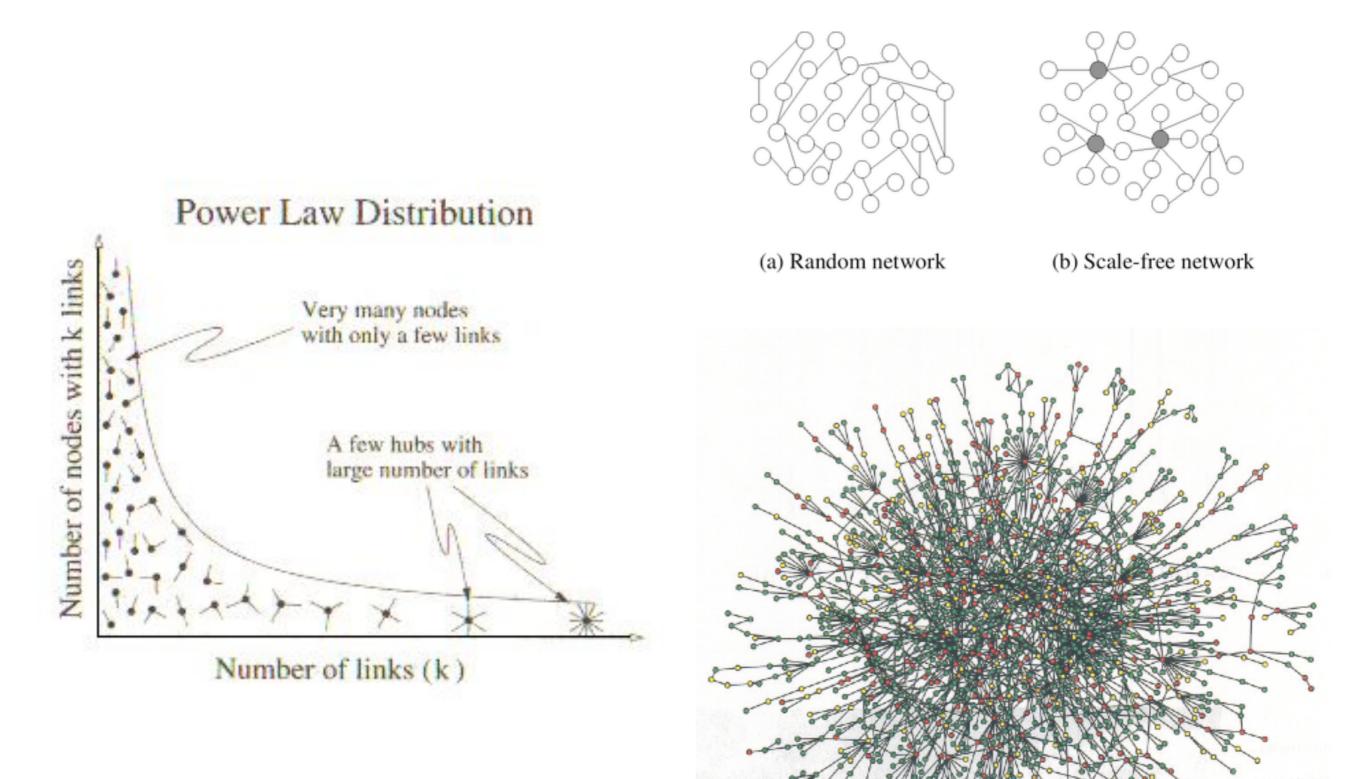


# Power Law degree distribution

• Scale free networks - power law degree distribution

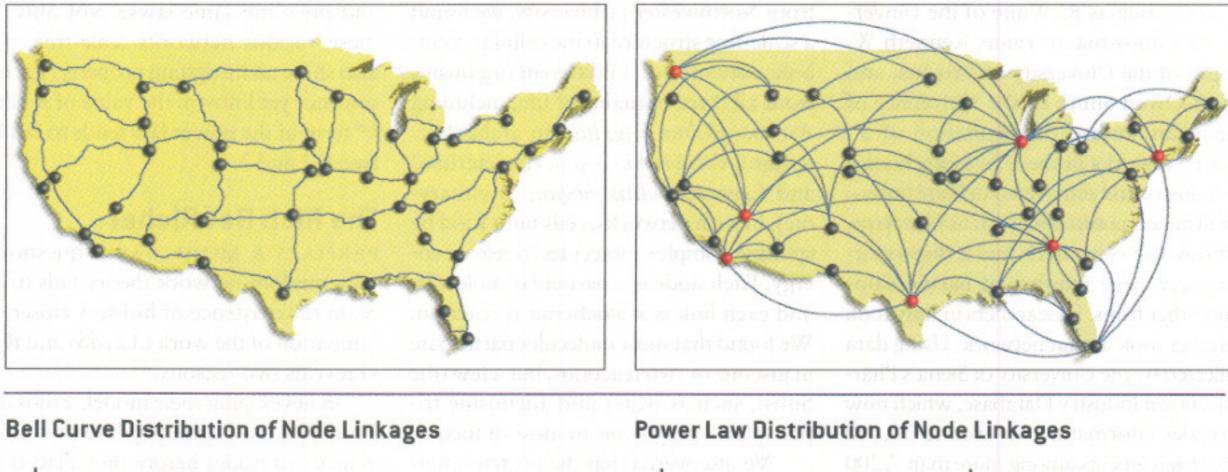
 $P(k) \sim k^{-\gamma}$ 

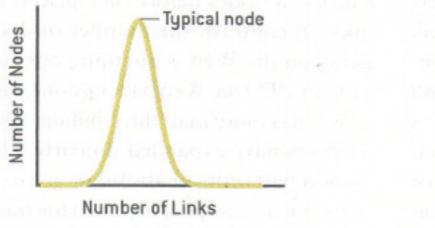
- Long tail results in both very sparse nodes and hub nodes
- Many biological networks, social networks, WWW, etc. are scale free

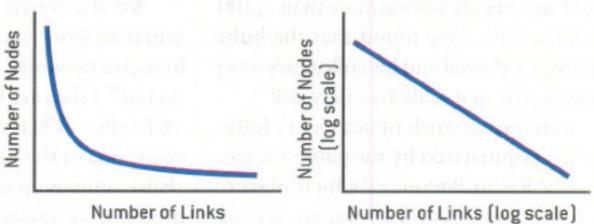




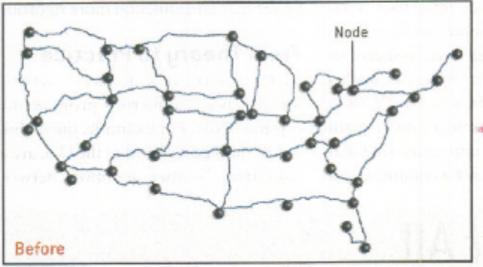






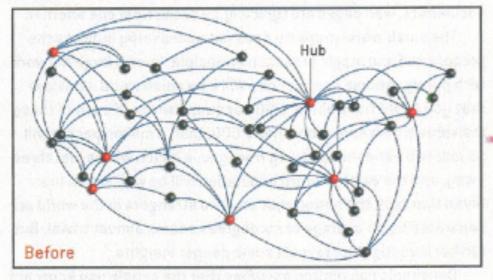


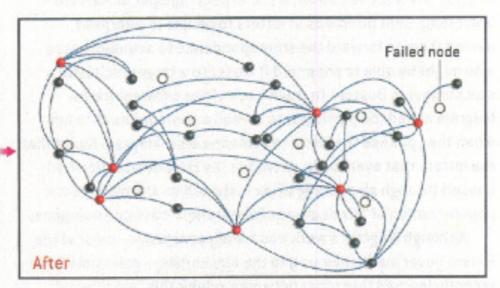




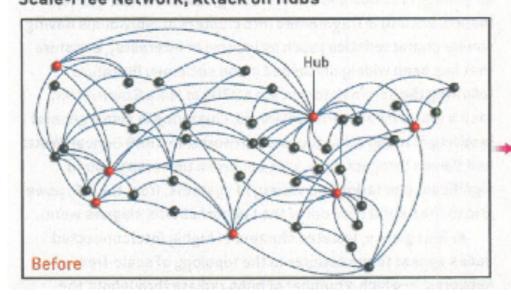
After

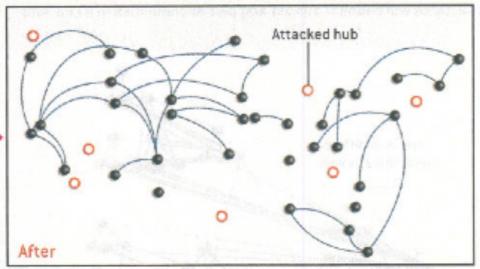
Scale-Free Network, Accidental Node Failure





Scale-Free Network, Attack on Hubs



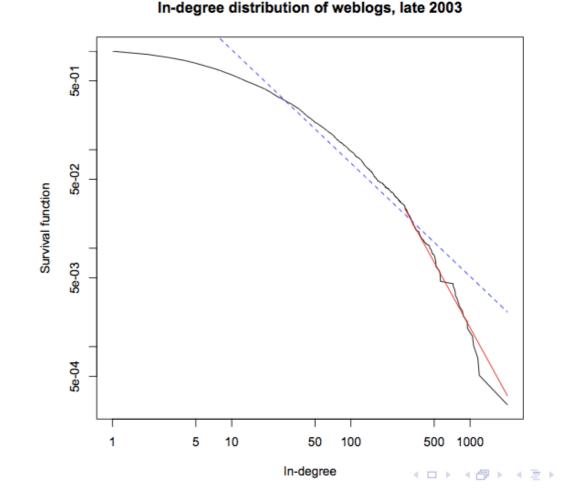


#### Scale Free Networks

- Scale free networks are robust to random failures (e.g. mutations in a gene)
- However, vulnerable to targeted attacks on hubs

#### Scale Free Networks

- However, lots of things look linear-ish on a log-log scale...
- Many suggest some abuse of power law/scale free idea
- Probably a lot of these are just heavy-tailed



# Clustering in networks

# Clustering in networks

- Many different ways to look at clustering
- How do node traits (degree, covariates) cluster based on edges? E.g. do smokers tend to be friends with other smokers? Do individuals cluster by popularity?
- Community detection finding clusters (groups) of nodes that are highly connected within the group and less connected between groups (i.e. clustering, where similarity is based on connectivity)

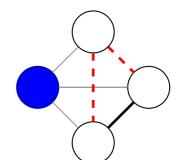
# Clustering Coefficient

- Based on the number of triangles in the network c = 1
- How many of my friends are also friends?
- Global clustering coefficient

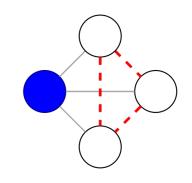
 $C = \frac{\text{number of triangles}}{\text{number of possible triangles}}$ 

• Local clustering coefficient

 $C_i = \frac{\text{actual edges between neighbors of } v_i}{\text{possible edges between neighbors of } v_i} = \frac{e_{jk} : v_j, v_k \in N_i | e_{jk} \in E}{|N_i|(|N_i| - 1)/2}$ 



c = 1/3

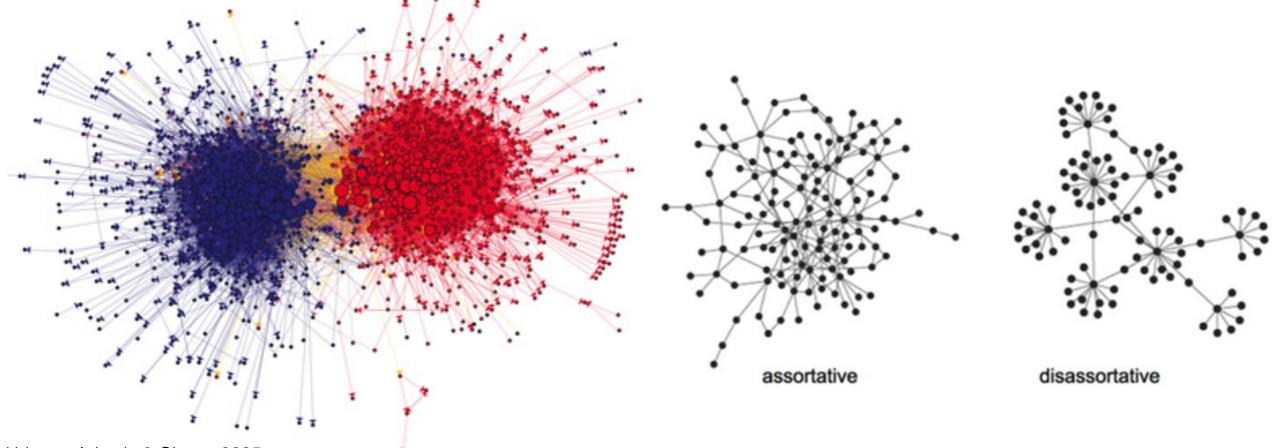


c = 0

- **Assortativity** measures network-level tendency for nodes to to attach to similar nodes
  - Similarity can be defined by node attributes, degree, etc.
- Calculate fraction of edges between nodes of the same type/value, compare to what would be expected from a random network
- Ranges from -1 (dissassortative) to 1 (assortative)
  - But min value (most dissassortative) is between -1 and 0 depending on the composition of the network

M. E. J. Newman, Mixing patterns in networks Physical Review E, 67 026126, 2003

- Heterosexual networks highly dissassortative by gender
- Social/sexual networks often assortative on a range of demographic, degree, behavioral traits - 'birds of a feather flock together'



Political blogs - Adamic & Glance 2005

- Consider a case where we have discrete characteristics on the nodes
- Define a mixing matrix with entries e<sub>ij</sub> given by the fraction of the total edges linking type i to type j
- Let  $a_i$  and  $b_i$  be the total fractions of each end type that we have ( $a_i = b_i$  for undirected graphs)

• Note that 
$$\sum_{ij} e_{ij} = 1$$
,  $\sum_{j} e_{ij} = a_i$ ,  $\sum_{i} e_{ij} = b_j$ 

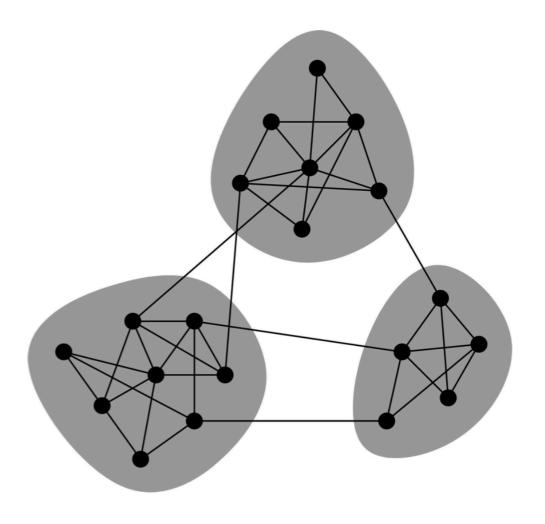
 Defined based on a mixing matrix - entries are the fraction of edges in a network linking type i to type j

$$r = \frac{\sum_{i} e_{ii} - \sum_{i} a_{i}b_{i}}{1 - \sum_{i} a_{i}b_{i}} = \frac{\mathrm{Tr}\mathbf{e} - ||\mathbf{e}^{2}||}{1 - ||\mathbf{e}^{2}||},$$

 For degree assortativity (and other scalar variables), assortativity is the Pearson correlation coefficient of degree between pairs of linked nodes

## Modularity

- How to decide communities (clusters) in a network?
- We want communities to have more in-group edges than between-group edges
- We could minimize between group edges, but this would lead to just putting all nodes in one community

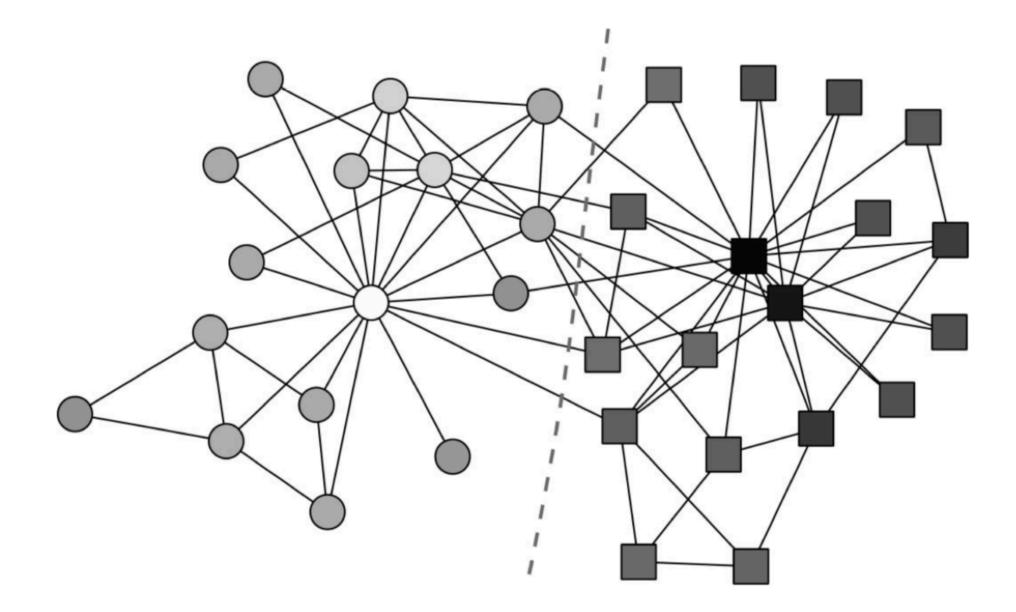


## Modularity

- Modularity compares observed community edges to what would be expected at random
- Modularity is the fraction of within-group edges minus the fraction expected at random (if degree conserved but edges are randomized)
- Modularity-based community detection: find community groupings that maximize modularity

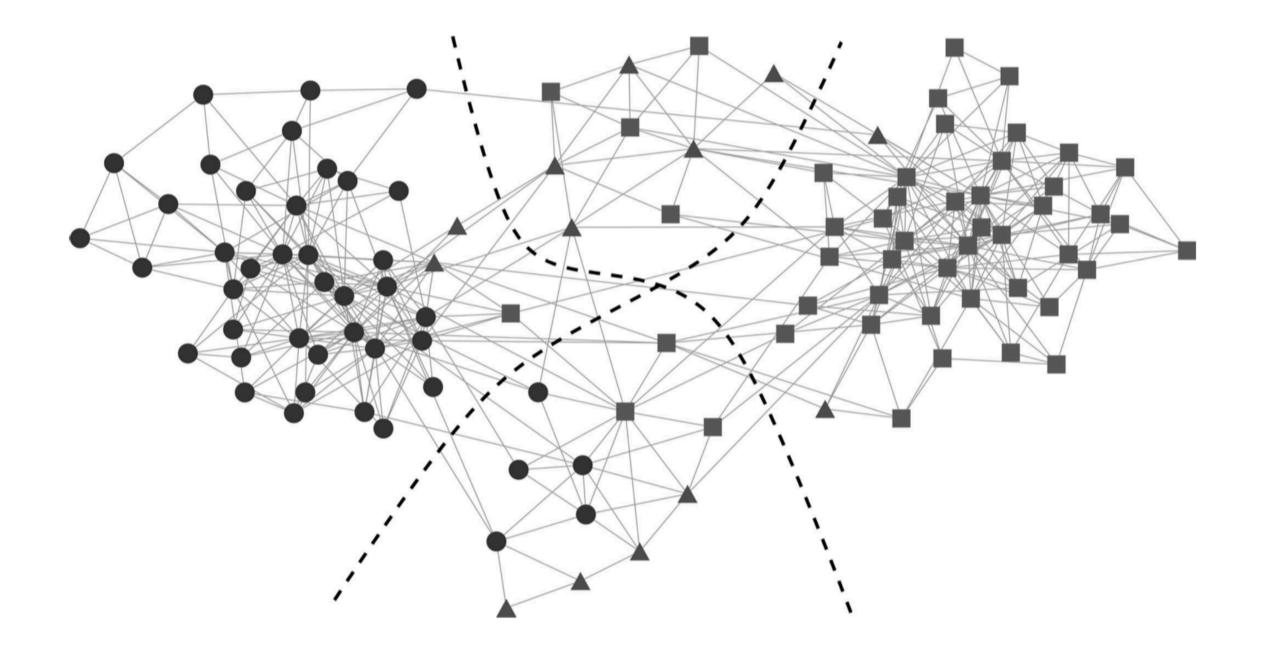


#### Karate club example



Newman, Mark EJ. "Modularity and community structure in networks." PNAS 103.23 (2006): 8577-8582.

#### Political books



Newman, Mark EJ. "Modularity and community structure in networks." PNAS 103.23 (2006): 8577-8582.

#### Modularity

- Can be slow/difficult to maximize—spectral methods have made much faster
- Resolution limit as the network grows larger, it is harder for modularity-based community detection methods to find small communities

#### Betweenness Methods for Clustering

- Since someone brought up in class—idea is to form communities by removing highest betweenness centrality nodes one at a time, where community formed when the network becomes disconnected
- Will generate a hierarchical structure of communities—can be advantageous! (also see hierarchical clustering methods)
- But also does not tend to perform as well as modularity or information theory based methods in tests
- <u>https://colab.research.google.com/drive/</u> <u>1FMJatlYt0es1XbghNJH4h-kOEgiloH6i?</u> <u>authuser=1#scrollTo=QloVhQdoBwkP</u>

#### For next time...

- Reading
  - Sayama Chapter 15
  - Sayama Chapter 17
  - Think Complexity Chapter 2