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Identifiability

• Identifiability—Is it possible to uniquely determine the 
parameters from the data? 

• Important problem in parameter estimation 

• Many different approaches - statistics, applied math, 
engineering/systems theory

Ollivier 1990, Ljung & Glad 1994,  Evans & Chappell 2000, Audoly et al 2003, Hengl et al. 2007, Chis et al 2011
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Identifiability

• Practical vs. Structural  

• Broad, sometimes overlapping categories 

• Noisy vs. perfect data  

• Example:  y = (m1 + m2)x + b  

• Unidentifiability - can cause  
serious problems when  
estimating parameters 

• Identifiable combinations

m1+m2
b

x

y







Structural Identifiability

• Assumes best case scenario - data is known 
perfectly at all times 

• Unrealistic! 

• But, necessary condition for practical identifiability 
with real, noisy data



Structural Identifiability

• Reveals identifiable combinations and how to 
restructure the model so that it is identifiable 

• Can give a priori information, help direct experiment 
design



Categories to consider

• Structural vs. practical identifiability 

• Analytical vs. numerical methods 

• Global vs. local results (in parameter space)



Key Concepts

• Identifiability vs. unidentifiability 

• Practical vs. structural, local vs. global 

• Can be in between, e.g. quasi-identifiable 

• Identifiable Combinations 

• Reparameterization 

• Related questions: observability, distinguishability & 
model selection



Methods we’ll talk about today

• Fisher information matrix - structural or practical, 
local, analytical or numerical method 

• Profile likelihood - structural or practical, local, 
numerical method 

• Differential Algebra Approach - structural identifiability, 
global, analytical method



Simple Methods

• Simulated data approach 

• If you have a small system, you can even plot the 
likelihood surface (typically can’t though—more on 
this with profile likelihoods)



Numerical Methods for Identifiability Analysis



Numerical Approaches to Identifiability

• Analytical approaches can be slow, sometimes have 
limited applicability 

• Wide range of numerical approaches 

• Sensitivities/Fisher Information Matrix 

• Profile Likelihood 

• Many others (e.g. Bayesian approaches, etc.)



Numerical Approaches to Identifiability

• Most can do both structural & practical identifiability 

• Wide range of applicable models, often (relatively) fast 

• Typically only local



Simple Simulation Approach

• Simulate data using a single set of ‘true’ parameter 
values 

• Without noise for structural identifiability 

• With noise for practical identifiability (in this case 
generate multiple realizations of the data)



Simple Simulation Approach

• Fit your simulated data from multiple starting points 
and see where your estimates land 

• If they all return to the ‘true’ parameters, likely 
identifiable, if they do not—may be problems 

• Note—unidentifiability when estimating with ‘perfect’, 
noise-free simulated data is most likely structural
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where a0 ¼ aN. We used the parameter values in Table 1 as the
true parameters, and supposed that bW N¼ bIN¼ bI . Based on
this value, we calculated a¼ 0:035183. To determine a0 ¼ aN
and bW , we supposed an effective population size of 100,000
(to be on the same order of magnitude as the total epidemic,
which caused " 82,204 cases). This yields a0 ¼ aN¼ 3518:3 and
bW ¼ 2:64# 10$6.

As previously, we simulated 100 data sets for each distribution
and estimation method, with the resulting parameter estimates
given in Tables 4–7 and Fig. 10. In all cases, we found that adding
water data significantly decreases the variability on estimates of
the parameters, particularly those involved in the waterborne
transmission pathway. R0 estimates were also tighter when
water data was added. The inclusion of a second series of
measurements in the water also gives additional information on
the pathogen shedding rate, which was not available using case
data measurements alone.

5. Discussion

Parameter identifiability is an important question for epide-
miological modeling: the ability to estimate model parameters
from a given data set will determine the ability to estimate
fundamental quantities such as the basic reproduction number,
and to assess the efficacy of different intervention strategies. This
is particularly relevant for waterborne disease models because of
the public health importance of distinguishing multiple transmis-
sion pathways, which are often quite difficult to measure directly.
Mathematical modeling and parameter estimation has increas-
ingly been used to help guide public health practice (Temime
et al., 2008; Halloran and Lipsitch, 2005; Koopman, 2004; Chick
et al., 2003), and more specifically has been recently used in the
cholera epidemic in Haiti (Abrams et al., 2012; Tuite et al., 2011;
Date et al., 2011), making the issue of parameter identifiability an
important and commonly encountered problem in public health

Fig. 7. Scatterplots showing parameter estimates for 100 simulated data sets using least squares estimation for Poisson noise. True parameters (indicated by red stars) are
as given in Table 1. Note the significant dependence between x and bW . The wider range in bW results in a wider range of R0 estimates, as R0 is linear in bW . The
relationship between bW and x also results in a corresponding relationship betweenR0 and x. (For interpretation of the references to color in this figure caption, the reader
is referred to the web version of this article.)

Fig. 8. Examples of simulated data set using least squares estimation with four noise distributions (left to right): Poisson, Gaussian, negative binomial with variance equal
to 5 times the mean, and negative binomial with variance equal to 50 times the mean.

M.C. Eisenberg et al. / Journal of Theoretical Biology 324 (2013) 84–102 95



Parameter Sensitivities

• Output sensitivity matrix 
(design matrix) 

• Closely related to  
identifiability 

• Insensitive parameters 

• Dependencies between columns
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Fisher Information Matrix

• FIM - NP x NP matrix 

• Useful in testing practical & structural ID - represents 
amount of information that the output y contains 
about parameters p 

• Cramer-Rao Bound:  FIM-1 ≤ Cov(p) 

• Rank(FIM) = number of identifiable parameters/
combinations



Fisher Information Matrix

• Special case when errors are normally distributed
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Fisher Information Matrix

• For looking at structural ID, often just use
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Identifiability & the FIM

• Covariance matrix/confidence interval estimates from 
Cramér-Rao bound: Cov ≥ FIM-1 

• e.g. large confidence interval ⇒ probably at least 
practically unID 

• Often can detect structural unID as ‘near-
infinite’ (gigantic) variances in Cov ~ FIM-1



Identifiability & the FIM

• Rank of the FIM is number of identifiable 
combinations/parameters - can do a lot by testing 
sub-FIMs and versions of the FIM 

• Use FIM to find blocks of related parameters & how 
many to fix (not estimate) 

• Identifiable combinations - can often see what 
parameters are related, but don’t know form 

• Interaction of combinations



Identifiability & the FIM

• But, be careful—FIM is local & asymptotic 

• Local approximation of the curvature of the likelihood

Raue et al. 2010Brouwer, Meza, Eisenberg 2017

parameter value



Profile Likelihood

• Want to examine likelihood surface, but often high-
dimensional 

• Basic Idea: ‘profile’ one parameter at a time, by fixing 
it to a range of values & fitting the rest of the 
parameters 

• Gives best fit at each point 

• Evaluate curvature of likelihood to determine 
confidence bounds on parameter (and to evaluate 
parameter uncertainty)



Profile Likelihood

• Choose a range of values for parameter pi 

• For each value, fix pi to that value, and fit the rest of 
the parameters 

• Report the best likelihood/RSS/cost function value for 
that pi value 

• Plot the best likelihood values for each value of pi—
this is the profile likelihood



Profile Likelihoods

identifiable
structurally 

unidentifiable
practically 

unidentifiable



Profile Likelihood & ID

• Can generate confidence bounds based on the 
curvature of the profile likelihood 

• Flat or nearly flat regions indicate identifiability issues 

• Can generate simulated ‘perfect’ data to test 
structural identifiability



Profile-based Confidence Intervals

• The shape of the likelihood—more  
specifically, the likelihood ratio:  
 
 
is approximately 𝜒2-distributed when 
the sample size is large 

• From this, we can calculate a threshold to define a 
confidence interval, based on the appropriate percentile 
of the 𝜒2 

2(NLL(p)�NLL(p̂))



Profile Likelihood

• Can also help reveal the form of identifiable 
combinations 

• Look at relationships between parameters when 
profiling 

• However, can be problematic when too many 
degrees of freedom 

• Similar to pairwise plots with sampling-based 
methods (e.g. MCMC)



2-Compartment Example
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there are more e�cient approaches, in this work we
simply search for nearly full rank sets directly, by testing
the rank of decreasing sized parameter subsets beginning
with A until we find subsets which are full rank once any
individual parameter is removed. If in Step 1 we did not
remove the identifiable parameters, we note that these
parameters will not appear in any of the nearly full rank
subsets, as any rank deficient subset will still be rank
deficient when the identifiable parameter is removed.

4. Likelihood Profiles - Next we compute the likelihood
profiles for the parameters in each subset found in Step
3. We consider only the flat regions of the likelihood
profile for each parameter pi, and examine the relationship
between pi and each other parameter. Because the subsets
are nearly full rank, this will force the optimal values
of the other parameters to trace out the form of the
identifiable combinations.

5. Functional Form for the Identifiable Combinations By
fitting rational functions to the profile relationships, we
determine an algebraic form for the relationship between
p⇤ and each fitted parameter. These curves represent the
structurally identifiable combinations for the model, pro-
jected via evaluation maps for the remaining parameters to
their fitted values (i.e. to values satisfying the identifiable
combinations). From these relationships we can solve to
recover the form for the overall identifiable combinations
by combining these di↵erent projections together. While
in practice for smaller models this is typically easy to do
by inspection (see examples below), for more complicated
models a more algorithmic approach or multivariate poly-
nomial interpolation approach may be preferable, which
we aim to investigate further in future work. In general the
combinations need not be rational functions, and in this
case one could fit other combination functions to the pro-
file relationships (e.g. exponential or piecewise functions);
but we restrict to this case as it represents a commonly en-
countered class of models and there are existing methods
for quickly interpolating rational functions from data.

4. Examples

In this section, we give several examples of the overall ap-
proach and illustrate some potential pitfalls. In Examples 1 - 3
we have chosen models where the identifiable combinations can
also be determined analytically so as to compare our method
with known results, and in Examples 4 and 5 we determine
identifiable combinations for models with more complex non-
linearities. We implemented the method in Python 2.7, using
Numpy and Scipy for numerical computation [35, 36].

In Step 1, we used a fine uniform sampling of 5000 time
points to generate the sensitivity matrices and subsequent FIMs.
To pre-screen the identifiable parameters in Step 1, we take a
tolerance of %CV � 100 to indicate structural unidentifiability
(so that if the uncertainty is larger than the magnitude of the

x1 x2

k21

k12

k01 k02

y=x /V1

k02
k12 k21

k01

Figure 2: Linear 2-compartment model diagram (top) and parameter
graph (bottom).

parameter it is considered unidentifiable). However, as noted
above, a precise threshold is somewhat unnecessary, since for
most examples structurally unidentifiable parameter %CV’s are
much larger (e.g. > 106 as in the examples below) and several
orders of magnitude di↵erent from the %CV’s for the identifi-
able parameters (< 100%).

In Step 4, we found that a threshold requiring the residual
sum of squares to be less than 10�6 was su�cient for most
unidentifiable examples to make sure the profiles are taken in
a flat region of likelihood space, although in practice the pro-
files in this case are often significantly smaller, e.g. on the order
of 10�10. In general, this threshold will depend on a range of
factors, such as the number of time points used in generating
the model simulations, numerical integration error and the con-
vergence criterion for the optimizer.

To fit rational functions in Step 5, we used least squares to
numerically fit a series of increasing degree rational functions
and used the Bayesian information criterion (BIC) [37] to
select the simplest among them. We chose the BIC for its
larger penalty for overparameterization, though in practice
any similar information criterion should work equally well
(e.g. the Aikaike information criterion, etc.), as the resulting
rational functions yielded near-perfect fits to the data, with
sum of square residuals typically on the order of machine
precision. While the method given here is not implemented in
an algorithmic way, the likelihood profile computation time is
similar to that of [18], plus a relatively small overhead for the
preconditioning in Steps 1-3.

Example 1: Linear 2-compartment Model. The linear 2-
compartment model (Figure 3) is commonly used in pharma-
cokinetic modeling, with equations given by:

ẋ1 = k12x2 � (k01 + k21)x1

ẋ2 = k21x1 � (k02 + k12)x2

y = x1/V
(5)

5

Eisenberg & Hayashi, Math Biosciences 2014

k01 + k21 + k12 + k02( ) = a3

k12k21 − k02 + k12( ) k01 + k21( )( ) = a4

k12 + k02( ) /V = a2

1 /V = a1 ⇒V = 1 / a1



Profile Likelihoods

Eisenberg & Hayashi, Math Biosciences 2014



Parameter Relationships

Eisenberg & Hayashi, Math Biosciences 2014
k01k12



Parameter Relationships

Eisenberg & Hayashi, Math Biosciences 2014



Some potential issues

Figure 4: Parameter combinations for the model in Example 2. Nearly
full rank subsets shaded, as determined by subset rank search.

Example 2: 2-compartment model with a rank-deficient pa-
rameter pair. To illustrate how Step 3 works when the number
of parameters is greater than the number of combinations plus
one, we consider the following simple variant of the previous
example:

ẋ1 = k1x2 � (k2 + k3 + k4)x1

ẋ2 = k4x1 � (k5 + k1)x2

y = x1/V
(7)

which is equivalent to Eq. (5) with k12 = k1, k01 = k2 + k3, k21 =
k4, and k02 = k5. The identifiable parameter combinations are
thus k1k4, k2 + k3 + k4, and k1 + k5, with V again identifiable.
A diagram of these combinations is given as the bottom com-
ponent of the example in Figure 1. Based on these combina-
tions, note that one of k2 and k3 must be fixed when profiling
in order to yield an identifiable model (as there are 3 combi-
nations but 5 k’s). As an example set of parameters, we take
k1 = 2.3, k2 = 0.421, k3 = 0.52, k4 = 0.61, k5 = 1.23, and
V = 2.2 (as before, the results are similar for a range of param-
eter values).

The results for Steps 1 and 2 are similar to Example 1. The
full model FIM has rank 4 and V is identifiable so we expect
3 identifiable combinations. When we consider the subsets of
parameters in Step 3, we find that {k5, k1, k4, k2}, {k5, k1, k4, k3},
and {k2, k3} satisfy our criteria. These subsets form a single
connected component with a loose pair (Figure 4). Note that
the loose pair, {k2, k3} is the only rank deficient pair. As a result,
any subset including both of these parameters cannot satisfy the
condition in Step 3.

To illustrate the necessity of Step 3, Figure 5 shows an exam-
ple result of the relationship between k4 and k2 if all parameters
except k4 are fitted. As k4 is shifted along the x-axis, k2 and k3
are not fully constrained, i.e. they both may take on any values
that maintain k2+k3 = 0.941�k4. This results in the appearance
of a scatterplot in Figure 5 with no clear relationship between
k4 and k2, in spite of the fact that they are part of an identifiable
combination.

Thus, in Step 4, we profile parameters within each subset,
fitting only the remaining parameters in the subset. This re-
sults in 10 distinct parameter relationships from the likelihood
profiles, shown in Figure 6. For e�ciency, it is not necessary
to profile parameters twice where subsets overlap to capture all
pairwise relationships. That is, assuming parameters in sub-
sets {k5, k1, k4, k2} and {k2, k3} have been profiled, we need only

Figure 5: Example parameter relationship for k4 and k2 when there
are loose parameters in the profile fit (i.e. there are more parameters
than degrees of freedom) The resulting parameter relationship shows
no precise relationship between k4 and k2, even though the likelihood is
flat in this region. We note that the general trends of the relationships
between parameters can still be seen because we’re starting close to
the true values in each step of the profile, but the specific form of the
identifiable combinations can’t be determined.

compute a profile for k3 in the remaining subset.
In Step 5, rational function fitting of the parameter relation-

ships in Figure 6 yields the following equations:

k1 =
1.403

1.031 � k2

k4 = 1.031 � k2

k5 =
2.23643 � 3.53k2

1.031 � k2

k4 =
1.403

k1

k5 = 3.53 � k1

k5 = 3.53 � 1.403
k4

k1 =
1.403

1.13 � k3

k2 = 0.941 � k3

k4 = 1.13 � k3

k5 =
2.5859 � 3.53k3

1.13 � k3

(8)

From the second, fourth, fifth, eighth, and ninth equations
above, we see that k2 + k3, k3 + k4, k2 + k4, k1 + k5, and k1k4
must be terms within our identifiable combinations. As we
expect to have 3 identifiable combinations, we can see from
these expressions that our identifiable combinations are most
likely k2 + k3 + k4, k1 + k5, and k1k4. Testing this against the
remaining equations in Eq. (8) shows that indeed these are the
identifiable combinations, which matches the combinations
found analytically above.
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FIM Subset Approach

• Basic idea - evaluate the rank of the FIM for subsets 
of parameters to elucidate the structure of the 
identifiable combinations 
 
 
 

• Can then combine this with profile likelihood 
approach by Raue et al. to determine the form of the 
combinations

p1

p2

p3

p5

p4

p6 p7
p8

p1

p2

p3

p5

p4

p6 p7
p8

Figure 7: Parameter combinations for the model in Example 3. Left: Grey circles indicate identifiable parameter combinations, e.g. p1 and p2 are
involved in an identifiable combination. Some parameters are involved in more than one identifiable combination (e.g. p2), so that there are two
overall connected components. Right: Nearly full rank subsets (shaded) and overall connected components as determined by subset rank search.

Example 3: Multiple connected components of parameter
combinations. Next, we demonstrate the method using a sim-
ple example that gives multiple connected components of pa-
rameters. In this case, we will use a nonlinear variation of the
two compartment model, which has been shown previously to
be structurally identifiable [9]. The model equations are as fol-
lows:

ẋ1 = k12x2 �
Vmaxx1

Km + x1
� k21x1

ẋ2 = k21x1 � (k12 + k02)x2

y = x1

(9)

To generate an unidentifiable model with parameter combi-
nations which form multiple connected components, we take
k12 = p1 p2, Vmax = p2 + p3 + p4, Km = p4 + p5, k21 = p6 + p7,
and k02 = p7 + p8, and let p1, . . . , p8 be our parameters to be
estimated. As the original model is identifiable, these forms are
also our identifiable combinations. Figure 7 shows a diagram of
the connected parameter components of this model. As an ex-
ample set of parameter values, we take p1 = 2, p2 = 0.4, p3 =
3, p4 = 0.8, p5 = 1.2, p6 = 0.8, p7 = 1.5, and p8 = 0.3.

In Step 1, the full FIM gives rank 5, correctly indicating
that we expect to have 5 identifiable combinations, and gives
each of the parameter %CV’s on the order of 105-108, indicat-
ing that all the individual parameters are unidentifiable. The
single-parameter %CV’s in Step 2 are all < 10%, so we know
that none of the parameters are completely insensitive, and thus
are all likely to be involved in identifiable combinations.

In Step 3, we search the subsets in order of decreasing size to
find nearly full rank subsets for estimation. Namely, the subsets
{p1, p2, p4, p5}, {p1, p2, p3}, {p3, p4, p5} and {p6, p7, p8} satisfy
our selection criteria (Figure 7). The first three subsets share
parameters, indicating that {p1, p2, p3, p4, p5} form a connected
component while {p6, p7, p8} form another.

We use these subsets for the profile likelihoods in Step 4,
noting that the subsets capture all 13 unique pairwise parame-
ter relationships (Figure 8). Rational function fitting in Step 5

yields the following parameter relationships:

p2 =
0.8
p1

p4 = 1.2 � 0.8
p1

p5 = �0.8 +
0.8
p1

p4 = 1.2 � p2

p5 = p2 + 0.8
p5 = 2 � p4

p1 =
0.8

3.4 � p3

p2 = 3.4 � p3

p4 = 3.8 � p3

p5 = �1.8 + p3

p7 = 2.3 � p6

p8 = �0.5 + p6

p8 = 1.8 � p7

(10)

For the first component, we examine the first ten equations
above. From the first, fourth, fifth, sixth, eighth, ninth, and tenth
equations, we see that we would expect p1 p2, p4 + p2, p5 � p2,
p5 + p4, p2 + p3, p4 + p3, and p5 � p3 to be parts of various
combinations. As this component has rank 3, we expect these
to collapse to form 3 combinations. We first propose p1 p2 as
an identifiable combination. For the remaining paired sums and
di↵erences, there are several equivalent ways we can collapse
them into combinations. For example, as all three pairs p2+ p3,
p4 + p3, p4 + p2 appear in the list of functions, we propose the
sum p2 + p3 + p4 as a combination. This then leaves p5 � p2,
p5 + p4, and p5 � p3, all of which can be explained by letting
p5 + p4 be a combination. This set of three combinations p1 p2,
p2 + p3 + p4, and p5 + p4 is consistent with all the profiled pa-
rameter relationships in this component, gives the appropriate

8
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FIM Subset Approach

• Use the FIM rank to select subsets of parameters 
which are nearly full rank (i.e. which become full rank 
if any single parameter is fixed) 

• Use these subsets when likelihood profiling to 
determine all parameter relationships 

• Polynomial interpolation to recover identifiable 
combinations

Eisenberg & Hayashi, Math Biosciences 2014



Example Model

Figure 4: Parameter combinations for the model in Example 2. Nearly
full rank subsets shaded, as determined by subset rank search.

Example 2: 2-compartment model with a rank-deficient pa-
rameter pair. To illustrate how Step 3 works when the number
of parameters is greater than the number of combinations plus
one, we consider the following simple variant of the previous
example:

ẋ1 = k1x2 � (k2 + k3 + k4)x1

ẋ2 = k4x1 � (k5 + k1)x2

y = x1/V
(7)

which is equivalent to Eq. (5) with k12 = k1, k01 = k2 + k3, k21 =
k4, and k02 = k5. The identifiable parameter combinations are
thus k1k4, k2 + k3 + k4, and k1 + k5, with V again identifiable.
A diagram of these combinations is given as the bottom com-
ponent of the example in Figure 1. Based on these combina-
tions, note that one of k2 and k3 must be fixed when profiling
in order to yield an identifiable model (as there are 3 combi-
nations but 5 k’s). As an example set of parameters, we take
k1 = 2.3, k2 = 0.421, k3 = 0.52, k4 = 0.61, k5 = 1.23, and
V = 2.2 (as before, the results are similar for a range of param-
eter values).

The results for Steps 1 and 2 are similar to Example 1. The
full model FIM has rank 4 and V is identifiable so we expect
3 identifiable combinations. When we consider the subsets of
parameters in Step 3, we find that {k5, k1, k4, k2}, {k5, k1, k4, k3},
and {k2, k3} satisfy our criteria. These subsets form a single
connected component with a loose pair (Figure 4). Note that
the loose pair, {k2, k3} is the only rank deficient pair. As a result,
any subset including both of these parameters cannot satisfy the
condition in Step 3.

To illustrate the necessity of Step 3, Figure 5 shows an exam-
ple result of the relationship between k4 and k2 if all parameters
except k4 are fitted. As k4 is shifted along the x-axis, k2 and k3
are not fully constrained, i.e. they both may take on any values
that maintain k2+k3 = 0.941�k4. This results in the appearance
of a scatterplot in Figure 5 with no clear relationship between
k4 and k2, in spite of the fact that they are part of an identifiable
combination.

Thus, in Step 4, we profile parameters within each subset,
fitting only the remaining parameters in the subset. This re-
sults in 10 distinct parameter relationships from the likelihood
profiles, shown in Figure 6. For e�ciency, it is not necessary
to profile parameters twice where subsets overlap to capture all
pairwise relationships. That is, assuming parameters in sub-
sets {k5, k1, k4, k2} and {k2, k3} have been profiled, we need only

Figure 5: Example parameter relationship for k4 and k2 when there
are loose parameters in the profile fit (i.e. there are more parameters
than degrees of freedom) The resulting parameter relationship shows
no precise relationship between k4 and k2, even though the likelihood is
flat in this region. We note that the general trends of the relationships
between parameters can still be seen because we’re starting close to
the true values in each step of the profile, but the specific form of the
identifiable combinations can’t be determined.

compute a profile for k3 in the remaining subset.
In Step 5, rational function fitting of the parameter relation-

ships in Figure 6 yields the following equations:

k1 =
1.403

1.031 � k2

k4 = 1.031 � k2

k5 =
2.23643 � 3.53k2

1.031 � k2

k4 =
1.403

k1

k5 = 3.53 � k1

k5 = 3.53 � 1.403
k4

k1 =
1.403

1.13 � k3

k2 = 0.941 � k3

k4 = 1.13 � k3

k5 =
2.5859 � 3.53k3

1.13 � k3

(8)

From the second, fourth, fifth, eighth, and ninth equations
above, we see that k2 + k3, k3 + k4, k2 + k4, k1 + k5, and k1k4
must be terms within our identifiable combinations. As we
expect to have 3 identifiable combinations, we can see from
these expressions that our identifiable combinations are most
likely k2 + k3 + k4, k1 + k5, and k1k4. Testing this against the
remaining equations in Eq. (8) shows that indeed these are the
identifiable combinations, which matches the combinations
found analytically above.
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Analytical Methods for Structural Identifiability



Methods for Structural Identifiability

• Laplace transform - linear models only 

• Taylor series approach - more broad application, 
but only local info & may not terminate 

• Similarity transform approach - difficult to make 
algorithmic, can be difficult to assess conditions for 
applying theorem 

• Differential algebra approach - rational function 
ODE models, global info

Bellman 1970, Cobelli & DiStefano 1980, Evans & Chappell 2000, Ollivier 1990, Ljung & Glad 1994,  Audoly et al 2003
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Differential Algebra Approach

• Basic idea: use substitution & differentiation to 
eliminate all variables except for observed output (y) 

• Clear (divide by) the coefficient for highest derivative 
term(s) 

• This is called the input-output equation(s) 

• Contains all structural identifiability info for the model



Differential Algebra Approach

• Use the coefficients to solve for identifiability of the 
model 

• If unidentifiable, determine identifiable combinations 

• Find identifiable reparameterization of the model? 

• Easier to see with an example—



2-Compartment Example

• Linear 2-Comp Model  
 
 
 

• state variables (x) 

• measurements (y) 

• known input (u) (e.g. IV injection)

x1 x2
u

y = x1/V

k01

k21

k12

k02

 

!x1 = u + k12x2 − k01 + k21( )x1
!x2 = k21x1 − k02 + k12( )x2
y = x1 /V
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2-Compartment Example
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k12k21 − k02 + k12( ) k01 + k21( )( )y − u k12 + k02( ) /V − !u /V = 0
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Or add information  
about one of  

the parameters



Differential Algebra Approach

• View model & measurement  
equations as differential polynomials 

• Reduce the equations using  
Gröbner bases, characteristic sets,  
etc. to eliminate unmeasured variables (x) 

• Yields input-output equation(s) only in terms of 
known variables (y, u) 

• Use coefficients to test model identifiability

x1 x2
u

y

k01

k21

k12
k02

Ollivier 1990, Ljung & Glad 1994,  Audoly et al 2003, etc.



Differential Algebra Approach

• From the coefficients, can often determine: 

• Simpler forms for identifiable combinations 

• Identifiable reparameterizations for model 

• Not always easy by eye—use Gröbner bases & other 
methods to simplify 

• Note about scaling as a useful first step (cf. 
nondimensionalization)



Differential Algebra Approach

• Convenient as a way to prove identifiability results for 
relatively broad classes of models 

• Linear compartmental models & graph structure (with 
Nikki Meshkat & Seth Sullivant) 

• SIR-type models (with Tony Nance) 

• Hodgkin-Huxley-type models (with Olivia Walch)



Conclusions

• Many related questions and potential issues when 
connecting models to data: observability, 
distinguishability & model selection, reparameterization & 
model/parameter reduction, and more 

• Many other methods! (eigenvalues of FIM, sloppy 
models, active subspaces, Bayesian methods, & more) 

• Depending on amount of data, model complexity, model 
type, and more, different approaches may work in 
different circumstances



Conclusions

• Identifiability—an important question to address when 
estimating model parameters 

• Common problem in math bio (identifiability-robustness 
tradeoff) 

• Many approaches, both numerical and analytical



Questions?

comic by Olivia Walch (UM): 
http://imogenquest.net

http://imogenquest.net

