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Bayesian approaches to parameter estimation

• Bayes’ Theorem, rewritten for inference problems:  

• Allows one to account for prior information about the 
parameters 

• E.g. previous studies in a similar population 

• Update parameter information based on new data

P p | z( ) = P params | data( ) = P z | p( ) ⋅P p( )
P z( )



Bayesian approaches to parameter estimation

P p | z( ) = P params | data( ) = P z | p( ) ⋅P p( )
P z( )

Likelihood Prior 
distribution

Normalizing constant 
(can be difficult to calculate!)

P (z) =

Z

p
P (z, p)dp



Denominator term - P(z)

• The denominator term: 

• Probability of seeing the data z from the model, over all 
parameter space 

• Often doesn’t have a closed form solution—evaluating 
numerically can also be difficult 

• E.g. if p is a three dimensional, then if we took 1000 grid 
points in each direction, the grid representing the function 
to be integrated has 10003 = 109 points

P (z) =

Z

p
P (z, p)dp



Maximum a posteriori (MAP) estimation

• Instead of working with the full term, just use the 
numerator:  

• The denominator is a constant, so the numerator is 
proportional to the posterior we are trying to estimate 

• Then the p which yields max(                     ) is the same p 
that maximizes  

• If we only need a point estimate, MAP gets around 
needing to estimate 

P (p|z) = P (z|p) · P (p)

P (z)

P (z|p) · P (p)
P (p|z)

P (z)



Bayesian Parameter Estimation

• Can think of Bayesian estimation as a map, where we 
update the prior to a new posterior based on data

P (p) ⇥P (z|p)
P (z)

P (p|z)
Prior

Likelihood/P(z)
Posterior



Conjugate Priors

• For a likelihood distribution, there may be a distribution 
family for our prior, which makes the posterior and prior 
come from the same type of distribution 

• This is called a conjugate prior for that likelihood 

• For example, a gamma distribution is the conjugate prior 
for a Poisson likelihood.

P (p) ⇥P (z|p)
P (z)

P (p|z)
Gamma

Poisson
Gamma



Why conjugate priors?

• If we have a conjugate prior, we can calculate the 
posterior directly from the likelihood and the prior—
handles the issue with calculating the denominator P(z) 

• Also makes it easier to repeat Bayesian estimation—
making the posterior the prior and updating as new data 
comes in

P (p) ⇥P (z|p)
P (z)

P (p|z)
Prior

Bayes
Posterior



Conjugate prior example: coin flip

• Let z be the data—i.e. the coin flip outcome, z = 1 if it’s 
heads, z = 0 if it’s tails 

• Let θ be the probability the coin shows heads 

• Likelihood: Bernoulli distribution

P (z|✓) = ✓z(1� ✓)1�z



Conjugate prior example: coin flip

• Conjugate prior: beta distribution 

• α and β are hyperparameters - shape parameters that 
describe the distribution of the model parameters

P (✓|↵,�) = ✓↵�1(1� ✓)��1

R 1
0 ✓↵�1(1� ✓)��1d✓

Whoa



How does the posterior work out to be a beta 
distribution as well?

P (✓|z) = P (z|✓)P (✓|↵,�)
P (z)

=
✓z(1� ✓)1�z ✓↵�1(1�✓)��1

R 1
0 ✓↵�1(1�✓)��1d✓

P (z)

=
✓z(1� ✓)1�z ✓↵�1(1�✓)��1

R 1
0 ✓↵�1(1�✓)��1d✓

R 1
0 P (z, ✓)d✓

=
✓z(1� ✓)1�z ✓↵�1(1�✓)��1

R 1
0 ✓↵�1(1�✓)��1d✓

R 1
0 ✓z(1� ✓)1�zd✓

Etc.—but you can see it will work out to be beta distributed



Coin flip example - Posterior

• Beta distributed with posterior hyperparameters: 

• If we take multiple data points, this works out to be:

↵post = ↵+ z �post = � + 1� z

�post = � + n�
nX

i=1

zi↵post = ↵+
nX

i=1

zi



Sampling Methods

• What if we want priors that aren’t conjugate? Or what if 
our likelihood is more complicated and it isn’t clear what 
the conjugate prior is? 

• Now we need some way to get the posterior, even 
though the denominator term is annoying 

• Sampling-based methods—in particular, Markov chain 
Monte Carlo (MCMC)



Markov Chain Monte Carlo (MCMC)

• MCMC is a method for sampling from a distribution 

• Markov chain: a type of (discrete) Markov process 

• Markov: memoryless, i.e. what happens at the next 
step only depends on the current step 

• Monte Carlo methods are a class of algorithms that 
use sampling/randomness—often used to solve 
deterministic problems (such as approximating an 
integral)



Markov Chain Monte Carlo (MCMC)

• Main idea: make a Markov chain that converges to the 
distribution we’re trying to sample from (the posterior) 

• The Markov chain will have some transient dynamics 
(burn-in), and then reach an equilibrium distribution 
which is the one we’re trying to approximate



Markov Chain Monte Carlo (MCMC)

• Many MCMC methods are based on random walks 

• Set up walk to spend more time in higher probability 
regions 

• Typically don’t need the actual distribution for this, just 
something proportional—so we can get the relative 
probability density at two points 

• So we don’t need to calculate P(z)! We can just use the 
numerator



Example: Metropolis Algorithm

• Idea is to ‘walk’ randomly through parameter space, 
spending more time in places that are higher probability—
that way, the overall distribution draws more from higher 
probability spots 

• Setup—we need 

• A function        proportional to the distribution we want 
to sample, in our case  

• A proposal distribution (how we choose the next point 
from the current one) - more on this in a minute

f(p) = P (z|p) · P (p)
f(p)



Metropolis Algorithm

• Start at some point in parameter space 

• For each iteration 

• Propose a new random point          based on the 
current point         (using the proposal distribution) 

• Calculate the acceptance ratio, 

• If          , the new point is as good or better—accept 

• If          , accept with probability

↵ = f(pnext)/f(pcurr)

pnext
pcurr

↵ � 1

↵ < 1 ↵



What does the metropolis algorithm do?
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Why does this recover the posterior distribution? 
Key is the acceptance ratio 

p

po
st

er
io

r

We want the amount  
of time spent here 

To be ~twice the amount  
of time spent here

↵

Acceptance ratio = ratio of heights



Why does this recover the posterior distribution?

• The acceptance ratio 

• Note it is equal to                                    since the 
denominators cancel 

• Suppose we’re at the peak 

• If f(pcurr) = 2 f(pnext), then              , i.e. we accept with 
1/2 probability 

• Overall, will mean the number of samples we take from a 
region will be proportional to the height of the distribution 

↵ = f(pnext)/f(pcurr)

↵ = 1/2

P (pnext|z)/P (pcurr|z)



Proposal Distribution

• A distribution that lets us choose our next point randomly 
from our current one 

• For Metropolis algorithm, must be symmetric 

• Common to choose a normal distribution centered on 
current point 

• Width (SD) of normal = proposal width 

• Choice of proposal width can strongly affect how the 
Markov chain behaves, how well it converges, mixes, etc.



Example

• Model: normal distribution 

• Suppose    is known,    to be estimated 

• Likelihood: 

• Prior:  

• Suppose we have 20 data points

N (µ,�)

µ�

µ ⇠ N (0, 3)



Example - proposal width: SD = 0.5



Goldilocks problem:  
What happens if we change the proposal width?

proposal SD = 0.05 proposal SD = 2



Example: prior, likelihood, and posterior (all scaled)



Assessing convergence

• MCMC methods will let us sample the posterior once 
they’ve converged to their equilibrium distribution 

• How to know once we’ve reached equilibrium? 

• Visual evaluation of burn-in 

• Autocorrelation of elements in chain k iterations apart 

• Also approaches to use in combination with/instead of 
burn-in: start with MAP estimation, multiple chains, etc.



Assessing convergence

• Often done visually 

• Although, this can be misleading:

Chain shifts after 130,000  
iterations due to a local min  
in sum of squares 
(Example from R. Smith,  
Uncertainty Quantification)



Metropolis & Metropolis-Hastings Caveats

• Assessing convergence—how long is burn-in?  

• What about when you have unidentifiability or multiple 
minima? 

• Correlated samples 

• How to choose a proposal width? (~size of next jump)



Next time

• Code our own Metropolis sampler 

• Then, next week: 

• A little bit on uninformed priors (e.g. Jeffreys) 

• Work with sampling packages & more realistic models! 

• Later potentially: other sampling approaches not based 
on MCMC (e.g. sample importance resampling)


