
Bayesian approaches to parameter estimation

Epid 814 - Marisa Eisenberg

Bayesian approaches to parameter estimation

• Bayes’ Theorem, rewritten for inference problems:

• Allows one to account for prior information about the
parameters

• E.g. previous studies in a similar population

• Update parameter information based on new data

P p | z() = P params | data() = P z | p() ⋅P p()
P z()

Bayesian approaches to parameter estimation

P p | z() = P params | data() = P z | p() ⋅P p()
P z()

Likelihood Prior 
distribution

Normalizing constant
(can be difficult to calculate!)

P (z) =

Z

p
P (z, p)dp

Denominator term - P(z)

• The denominator term:

• Probability of seeing the data z from the model, over all
parameter space

• Often doesn’t have a closed form solution—evaluating
numerically can also be difficult

• E.g. if p is a three dimensional, then if we took 1000 grid
points in each direction, the grid representing the function
to be integrated has 10003 = 109 points

P (z) =

Z

p
P (z, p)dp

Maximum a posteriori (MAP) estimation

• Instead of working with the full term, just use the
numerator:  

• The denominator is a constant, so the numerator is
proportional to the posterior we are trying to estimate

• Then the p which yields max() is the same p
that maximizes

• If we only need a point estimate, MAP gets around
needing to estimate

P (p|z) = P (z|p) · P (p)

P (z)

P (z|p) · P (p)
P (p|z)

P (z)

Bayesian Parameter Estimation

• Can think of Bayesian estimation as a map, where we
update the prior to a new posterior based on data

P (p) ⇥P (z|p)
P (z)

P (p|z)
Prior

Likelihood/P(z)
Posterior

Conjugate Priors

• For a likelihood distribution, there may be a distribution
family for our prior, which makes the posterior and prior
come from the same type of distribution

• This is called a conjugate prior for that likelihood

• For example, a gamma distribution is the conjugate prior
for a Poisson likelihood.

P (p) ⇥P (z|p)
P (z)

P (p|z)
Gamma

Poisson
Gamma

Why conjugate priors?

• If we have a conjugate prior, we can calculate the
posterior directly from the likelihood and the prior—
handles the issue with calculating the denominator P(z)

• Also makes it easier to repeat Bayesian estimation—
making the posterior the prior and updating as new data
comes in

P (p) ⇥P (z|p)
P (z)

P (p|z)
Prior

Bayes
Posterior

Conjugate prior example: coin flip

• Let z be the data—i.e. the coin flip outcome, z = 1 if it’s
heads, z = 0 if it’s tails

• Let θ be the probability the coin shows heads

• Likelihood: Bernoulli distribution

P (z|✓) = ✓z(1� ✓)1�z

Conjugate prior example: coin flip

• Conjugate prior: beta distribution 

• α and β are hyperparameters - shape parameters that
describe the distribution of the model parameters

P (✓|↵,�) = ✓↵�1(1� ✓)��1

R 1
0 ✓↵�1(1� ✓)��1d✓

Whoa

How does the posterior work out to be a beta
distribution as well?

P (✓|z) = P (z|✓)P (✓|↵,�)
P (z)

=
✓z(1� ✓)1�z ✓↵�1(1�✓)��1

R 1
0 ✓↵�1(1�✓)��1d✓

P (z)

=
✓z(1� ✓)1�z ✓↵�1(1�✓)��1

R 1
0 ✓↵�1(1�✓)��1d✓

R 1
0 P (z, ✓)d✓

=
✓z(1� ✓)1�z ✓↵�1(1�✓)��1

R 1
0 ✓↵�1(1�✓)��1d✓

R 1
0 ✓z(1� ✓)1�zd✓

Etc.—but you can see it will work out to be beta distributed

Coin flip example - Posterior

• Beta distributed with posterior hyperparameters:

• If we take multiple data points, this works out to be:

↵post = ↵+ z �post = � + 1� z

�post = � + n�
nX

i=1

zi↵post = ↵+
nX

i=1

zi

Sampling Methods

• What if we want priors that aren’t conjugate? Or what if
our likelihood is more complicated and it isn’t clear what
the conjugate prior is?

• Now we need some way to get the posterior, even
though the denominator term is annoying

• Sampling-based methods—in particular, Markov chain
Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC)

• MCMC is a method for sampling from a distribution

• Markov chain: a type of (discrete) Markov process

• Markov: memoryless, i.e. what happens at the next
step only depends on the current step

• Monte Carlo methods are a class of algorithms that
use sampling/randomness—often used to solve
deterministic problems (such as approximating an
integral)

Markov Chain Monte Carlo (MCMC)

• Main idea: make a Markov chain that converges to the
distribution we’re trying to sample from (the posterior)

• The Markov chain will have some transient dynamics
(burn-in), and then reach an equilibrium distribution
which is the one we’re trying to approximate

Markov Chain Monte Carlo (MCMC)

• Many MCMC methods are based on random walks

• Set up walk to spend more time in higher probability
regions

• Typically don’t need the actual distribution for this, just
something proportional—so we can get the relative
probability density at two points

• So we don’t need to calculate P(z)! We can just use the
numerator

Example: Metropolis Algorithm

• Idea is to ‘walk’ randomly through parameter space,
spending more time in places that are higher probability—
that way, the overall distribution draws more from higher
probability spots

• Setup—we need

• A function proportional to the distribution we want
to sample, in our case

• A proposal distribution (how we choose the next point
from the current one) - more on this in a minute

f(p) = P (z|p) · P (p)
f(p)

Metropolis Algorithm

• Start at some point in parameter space

• For each iteration

• Propose a new random point based on the
current point (using the proposal distribution)

• Calculate the acceptance ratio,

• If , the new point is as good or better—accept

• If , accept with probability

↵ = f(pnext)/f(pcurr)

pnext
pcurr

↵ � 1

↵ < 1 ↵

What does the metropolis algorithm do?

pstart

f∝
po

st
er

io
r

What does the metropolis algorithm do?

p

f∝
po

st
er

io
r

pnext

} >
→Accept

pcurr

proposal
distribution

What does the metropolis algorithm do?

p

f∝
po

st
er

io
r

pcurrpnext

} >
→Accept

What does the metropolis algorithm do?

p

f∝
po

st
er

io
r

pnext

} >

→Maybe accept with probability α

pcurr

Reject

What does the metropolis algorithm do?

p

f∝
po

st
er

io
r

pnext

} >

→Maybe accept with probability α

pcurr

Accept

What does the metropolis algorithm do?

p

f∝
po

st
er

io
r

pcurr

What does the metropolis algorithm do?

p

f∝
po

st
er

io
r

pcurr

What does the metropolis algorithm do?

p

f∝
po

st
er

io
r

pcurr

What does the metropolis algorithm do?

p

f∝
po

st
er

io
r

pcurr

Why does this recover the posterior distribution?
Key is the acceptance ratio

p

po
st

er
io

r

We want the amount  
of time spent here

To be ~twice the amount  
of time spent here

↵

Acceptance ratio = ratio of heights

Why does this recover the posterior distribution?

• The acceptance ratio

• Note it is equal to since the
denominators cancel

• Suppose we’re at the peak

• If f(pcurr) = 2 f(pnext), then , i.e. we accept with
1/2 probability

• Overall, will mean the number of samples we take from a
region will be proportional to the height of the distribution

↵ = f(pnext)/f(pcurr)

↵ = 1/2

P (pnext|z)/P (pcurr|z)

Proposal Distribution

• A distribution that lets us choose our next point randomly
from our current one

• For Metropolis algorithm, must be symmetric

• Common to choose a normal distribution centered on
current point

• Width (SD) of normal = proposal width

• Choice of proposal width can strongly affect how the
Markov chain behaves, how well it converges, mixes, etc.

Example

• Model: normal distribution

• Suppose is known, to be estimated

• Likelihood:

• Prior:

• Suppose we have 20 data points

N (µ,�)

µ�

µ ⇠ N (0, 3)

Example - proposal width: SD = 0.5

Goldilocks problem:  
What happens if we change the proposal width?

proposal SD = 0.05 proposal SD = 2

Example: prior, likelihood, and posterior (all scaled)

Assessing convergence

• MCMC methods will let us sample the posterior once
they’ve converged to their equilibrium distribution

• How to know once we’ve reached equilibrium?

• Visual evaluation of burn-in

• Autocorrelation of elements in chain k iterations apart

• Also approaches to use in combination with/instead of
burn-in: start with MAP estimation, multiple chains, etc.

Assessing convergence

• Often done visually

• Although, this can be misleading:

Chain shifts after 130,000  
iterations due to a local min  
in sum of squares
(Example from R. Smith,  
Uncertainty Quantification)

Metropolis & Metropolis-Hastings Caveats

• Assessing convergence—how long is burn-in?

• What about when you have unidentifiability or multiple
minima?

• Correlated samples

• How to choose a proposal width? (~size of next jump)

Next time

• Code our own Metropolis sampler

• Then, next week:

• A little bit on uninformed priors (e.g. Jeffreys)

• Work with sampling packages & more realistic models!

• Later potentially: other sampling approaches not based
on MCMC (e.g. sample importance resampling)

