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Parameter Estimation

In general—search parameter space to find optimal fit
to data

- Or to characterize distribution of parameters that
matches data
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Parameter Estimation

Basic idea: parameters that
give model behavior that

more closely matches data /(\Lk
are ‘best’ or ‘'most likely’ F'//\._

Ccases

Frame this from a statistical E

perspective (inference, regression)

-+ Can determine ‘most likely’ parameters or
distribution, confidence intervals, etc.



How to frame this statistically”?

- Maximum Likelihood Approach

- |dea: rewrite the ODE model as a statistical model,
where we suppose we know the general form of the
density function but not the parameter values

- Then it we knew the parameters we could calculate
probabillity of a particular olbbservation/data:

P(z!p)

/ 2\

data parameters



Maximum Likelihood

- Likelihood Function

P(z1p)=f(z.p)=L(plz)

- Re-think the distribution as a function of the data
iINnstead of the parameters

- E.Q. f(zlu,02)= \/%Gexp(—(zz_a‘l;) ) = L(M,O’z IZ)

- Find the value of p that maximizes L(p|z) - this is the
maximum likelihood estimate (MLE) (most likely given
the data)



Likelihood Function
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Likelihood Function

Probability density

Move the parameter and
the distribution shifts

s

Data value



Likelihood Function

Parametervalue

Data value



Likelihood Function
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Likelihood Function

PDF given a
parameter value
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Likelihood Function

Likelihood function
given data
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Maximum Likelihood

-+ Consistency - with sufficiently large number of
observations n, it is possible to find the value of p with

arbitrary precision (i.e. converges in

orobability to p)

Normality - as the sample size increases, the distribution
of the MLE tends to a Gaussian distribution with mean and
covariance matrix equal to the inverse of the Fisher

iINformation matrix

Efficiency - achieves CR bound as

sample size—s (N0

consistent estimator has lower asymptotic mean squared

error than MLE)



Likellhood functions

- In general, your likelihood is just the probability
distribution of your data, written in terms of your model

- Then, we ‘re-think’ of that distribution as a function of the
parameters with the data fixed



Likellhood functions

For example—what might a model and likelihood function be
for the following situations:

Measure: 3 coin tosses,
Parameter to estimate: coin bias (i.e. % heads)

Measure: incidence of bicycle accidents each year
Parameter to estimate: rate of bicycle accidents

Measure: age information (maylbe other covariates) and
current happiness levels in a sample of people
Parameters to estimate: effect of age & other covariateson
happiness level

Measure: incidence of bicycle accidents each year
Parameter to estimate: daily probability of a bicycle
accident per square meter



—xample - ODE Model with Gaussian Error

- Model:

i = f(x.t,p)
y = g(x,t,p)

+ Suppose data is taken at times ¢, ,Z, ,...,f

n

- Dataatti=z; = y(ti)-l_ei

+ SUppPOSse error is gaussian and unbiased, with known
: 2 :
variance g~ (can also be considered an unknown
parameter)



—xample - ODE Model with Gaussian Error

- The measured data Z; at time | can e viewed as a
sample from a Gaussian distribution with mean

v(X, ti,0) and variance o’

Concentration
o = N w D Ul (@)}

2 4 6 8 10 12
Time

o

Suppose all measurements are independent (is this
realistic’?)



—xample - O

DE Model with Gaussian Error

- Then the likelihood function can be calculated as:

1 ( (zi—u)z\

Gaussian PDF: f(zilu,02)=mae><pk— = }



—xample - ODE Model with Gaussian Error

- Then the likelihood function can be calculated as:
cX 2\
2O pk }

Gaussian PDF:  f (z lu,0°
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—xample - ODE Model with Gaussian Error

- Then the likelihood function can be calculated as:
2\

Gaussian PDF:  f (z lu,0° S eka }
Formatted for 1 / )) \
model: flatalonop) ZWGXPL J

Likelihood function assuming independent observations:

L(y(tl.,p),a2 Izl,...,zn) = f(zl,...,zn Iy(ti,p),az)

= El[f(zi Iy(ti,p),az)



—xample - O

L(y(tl.,p),(f2 1 Z,5. .-, zn) = f(z1 ..... Z, Iy(ti,p),az)
ﬁf(zi Iy(tl.,p),Gz)
n/2 / i(zi — y(ti,p))z\

=1

= Model with Gaussian
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—xample - O

DE Model with Gaussian

—rror

t Is often more convenient to minimize the Negative
_0g Likelihood (-LL) instead of maximizing the
_ikelihood

+ Log is well behaved, minimization algorithms
common

1 .
~LL =-1In ( ) exp| — =

( s / c (Zi _Y(ti,p))Z\\

2n0°

\ \




—xample - ODE Model with Gaussian Error

/ | s / i(zi _Y(ti,p))z\\

—LL =-In ( 2) exp| — = 2
2n0 20
| \ /)
/ E(Zi _y(ti’p))z\
n =
~LL = - ——ln(Zn)—nln(G)— = 2
9) 20

\ )



—xample - ODE Model with Gaussian Error

n

. (Zi ~ )’(tiap))z
B _ i=1
LL 2ln(2yr)+ nln(o)+ 5

If 0'Is known, then first two terms are constants & will not be
changed as p Is varied—so we can minimize only the 3rd term
and get the same answer

/z(zi —y(ti,p))z\

2

minp(—LL) = minp 5
0}




—xample - O

DE Model with Gaussian

—rror

. Similarly

minp(—LL) = minp

for denominator:

/2(4‘ _y(ti’p))Z\

> =m1np(
l

20

& )

+ This is just least squares!

n

=]

(2 - y(ti»p))z)

S0, least squares is equivalent to the ML estimator
when we assume a constant known variance



Let’s code this likelihood function for an SIR model!

+ Switch to R and code together



Maximum Likelihood Summary for ODESs

- Can calculate other ML estimators for different
distributions

- Not always least squares-ish! (mostly not)

- Although surprisingly, least squares does fairly
decently a lot of the time



—xample - Poisson ML

For count data (e.g. incidence data), the Poisson
distribution is often more realistic than Gaussian

Likelihood function?



—xample - Poisson ML

- Model: .
X = f(x,t,p)
y=8(x.1,p)
- Data Z; Is assumed to be Poisson with mean y(tl.)

-+ Assume all data points are independent

. Poisson PMF: y(t,- )Zi e_)’(ti)

f(zi Iy(tl.))=

Z!



—xample - Poisson ML

- Likelihood function:

L(y(t,p)lz1 ..... Zn)




Poisson ML

 Negative log likelihood:

- |Last term Is constant



—xample - Poisson ML

- Poisson ML Estimator:

min, (~22) = min, (-3 2 n(3(0))+ (e

- Other common distributions - negative binomial
(overdispersion), zero-inflated poisson or negative
binomial, etc.



Maximum Likelihood Summary for ODESs

- Basic approach - suppose only measurement error

- Data Is given by distribution where model output is
the mean

- Suppose each time point of data is independent

- Use PDF/PMF to calculate the likelihood

- Take the negative log likelihood, minimize this over
the parameter space



Maximum Likelihood for other kinds of models

-+ Can be quite different!

- May require more computation to evaluate (e.g.
stochastic models)

- May also be structured quite differently! (e.g. network or
iIndividual-based models)



Tiny Network Example

-+ Data: infection pattern on the network

- Model: suppose constant probability p of infecting along
an edge from someone who got sick before you

- What’s the likelihood?




Tiny Network Example

- Data: infection pattern on the network

- Model: suppose constant probability p of infecting along
an edge, assuming we start with first case

- What’s the likelihood?

- Let’s see how we would calculate
it for a specific data set

- L(p,data) = P(susc nodes did not get sick)
X P(infected nodes did get sick)

(note not actually independent though!)



Now that we can write down a likelihood function,
how do we find the maximum likelihood estimate”?

- For L(8, z)how to find

) = argmax,.g £(6, 2)

—or simple examples (e.g. coin toss,
iInear regression model, simple
P0oIsson model), we can calculate
what values of the parameters will
maximize L explicitly! (Take derivatives

of L and set = 0) parameter 1
' : . \/SQnee,':O
- But what if more complicated? This

may Not be possible—need to use L
numerical optimization. Most complex

systems models fall into this category W

parameter 2




Parameter Estimation Algorithms (Optimizers)

- Starting values for Color = -LL
arameters

+ Optimization algorithm
searches parameter
space to minimize RSS
or -LL

Parameter 2

- Converges once it finds
a minimum

Parameter |



Parameter Estimation in R

- Need several pieces
-+ ODE function that allows you to pass parameters
+ Cost function - something to calculate the RSS or -LL

- Optimization function
(e.g. optim)



8BasIc ldea

Starting - Final
Parameter > Optlml.zatlon > Parameter
Values Algorithm Estimates
Simulate ODE
/(ODE function)\
Adjust Compare to Data

Parameter Values (Calc Cost Fcn)



Let’s code this up in R using the SIR model from
before!

- Switch to R & code together



Very (very!) brief intro to
BSayesian Approaches to Parameter Estimation

- Allows one to account for prior information about the
parameters

+ E.g. previous studies in a similar population
- Update parameter information based on new data

- Recall Bayes’ Theorem:

P(p | z) = P(pamms | data) =



Very (very!) brief intro to
BSayesian Approaches to Parameter Estimation

Prior
| ikelihood distribution

\ /
P(P|Z)= P(pammsldata)= P(z1p)-P(p)

/P(Z)

Normalizing constant
(can be difficult to calculate!)




BSayesian Parameter Estimation

From prior distribution & likelihood distribution, determine
the posterior distribution of the parameter

0.06 - — Priar
—Likelihood
0.05 - — P osterior

o

o

4o
1

Likelihood f(X|0)

0 10 20 30 40 a0 60 70 80 90 100
Parameter value s

Can repeat this process as new data is available



BSayesian Parameter Estimation

- Treats the parameters inherently as distributions (pbelief)

Philosophical battle between Bayesian & frequentist
nerspectives

- Word of caution on choosing your priors

- Denominator issues - MAP Approach



DID THE SUN JUST EXPLODE?

(ITS NIGHT, 50 WERE NOT SURE.)

THIS NEUTRINO DETECTOR MERSURES
WHETHER THE SUN HAS GONE NOVA.

( THEN, TROWS TWO DICE. |F THEY

BOTH COME UP SiX, IT UES TO US,
OTHERWISE, IT TELLS THE TRUF.
LET'S TRY.
CETECTOR! HAS THE
SN GONE NOA?

) L,
Y

FREQUENTIST STANSTICIAN: BAYESIAN STATISTIOAN:

THE PROGABILITY OF THIS RESULT

HAPPENING BY CHANCE 15 3;=0077 BET YOU $50
GNCE p<0.05, T CONCLUDE T HANT.
THAT THE SUN HAS EXPLODED: )

\ }%\ | O
ﬁ from XKCD:

http://xkcd.com/| 132/



http://xkcd.com/1132/
http://xkcd.com/1132/

